|

Files on LUMI: Using Lustre

=

&

Bl
T 3

LUMI User Support Team (LUST)
CSC

June 2025
Slides originally authored by Kurt Lust
(LUST, UAntwerp)

File systems on LUMI LUMI

* HPC since the second half of the 1980s has mostly been about trying to build
a fast system from relatively cheap hardware and cleverly written software.

* The Lustre parallel file system fits in that way of thinking:
* Link several regular servers
* with a good network to the compute resources
 to build a single system with a lot of storage capacity and a lot of bandwidth
. (t_holug)h unfortunately not all IOPS - number of I/O operations - scaled as

nicely).
 And it is the main file system on large HPE Cray systems.

« HPE Cray EX systems go one step further:
 Lustre is the only network file system on the compute nodes.

 as part of the measures taken to minimise OS jitter and reduce node
memory use.

Lustre building blocks LUMI

Key element: Separation of data and
metadata

Lustre building blocks

Metadata servers
(MDSes) with one
or more metadata
targets (MDTs) each

store namespace
NECELE
(filename, access
permissions, ...)
and file layout.

Lustre

LUMI

High-Performance Interconnect

Clients

Object

Metadata Storage
Server Server
(MDS) (OSS)

\‘
<>

Metadat
Tearageat : Object Storage
(MDT) Target

(OST)

Object
Storage
Server
(OSS)

Object Storage
Target
(OST)

Lustre building blocks LUMI

Lustre High-Performance Interconnect
Clients

Object Object

Metadata Storage Storage
Server Server Server
\/ (MDS) (0SS) (0SS)
Object storage servers v — \Q/ \Q/

(OSSes) with one or ‘

*@

more object storage
targets (OSTs) each Q A A@.‘» A =
store the actual data. \/ N , 2 |

v .

V MTeat raédeatta Object Storage Object Storage

Target Target
(M (OST) (OST)

¢
€

LUMI

Lustre building blocks

High-Performance Interconnect

Lustre
Clients
Object Object
Metadata Storage Storage
Server Server Server

A%

Lustre clients that

access and use the data ‘ O O
and make the whole &S . S <z
Lustre setup look like a ‘ v \\;\\// W

single large file system

{

Metadat
Tearageat @ Object Storage Object Storage

Target Target
(MOT) (05T) (05T)

Lustre building blocks

High-performance
interconnect between

all pieces of the storage
system

Lustre
Clients

LUMI

High-Performance Interconnect

Metadata
Server
(MDS)

&

l

S

{

Metadata
Target
(MDT)

Object
Storage

Server
(OSS)

A%

Object Storage
Target
(OST)

Object
Storage
Server

N

Object Storage
Target
(OST)

LUMI

Lustre building blocks (2)

 Lustre separates data and metadata as both are used differently

 Metadata servers (MDSes) with one or more metadata targets
(MDTs) each store namespace metadata (filename, access
permissions, ...) and file layout.

* Object storage servers (OSSes) with one or more object storage
targets (OSTs) each store the actual data.
» Capacity of Lustre is the sum of the capacity of the OSTs

* Lustre clients that access and use the data and makes the whole
Lustre setup look like a single large file system
» Transparent in functionality: You can use it as any regular Linux file system
« But not transparent in performance: How you use Lustre can have a huge
impact on performance

 All linked together through the high performance interconnect.

LUMI

Lustre building blocks (2)

 Lustre separates data and metadata as both are used differently

 Metadata servers (MDSes) with one or more metadata targets
(MDTs) each store namespace metadata (filename, access
permissions, ...) and file layout.

* Object storage servers (OSSes) with one or more object storage
targets (OSTs) each store the actual data.
e Capacity of Lustre is the sum of the capacity of the OSTs

* Lustre clients that access and use the data and makes the whole
Lustre setup look like a single large file system
» Transparent in functionality: You can use it as any regular Linux file system
« But not transparent in performance: How you use Lustre can have a huge
impact on performance

 All linked together through the high performance interconnect.

LUMI

Lustre building blocks (2)

 Lustre separates data and metadata as both are used differently

 Metadata servers (MDSes) with one or more metadata targets
(MDTs) each store namespace metadata (filename, access
permissions, ...) and file layout.

* Object storage servers (OSSes) with one or more object storage
targets (OSTs) each store the actual data.
» Capacity of Lustre is the sum of the capacity of the OSTs

* Lustre clients that access and use the data and makes the whole
Lustre setup look like a single large file system
» Transparent in functionality: You can use it as any regular Linux file system
* But not transparent in performance: How you use Lustre can have a huge
impact on performance

 All linked together through the high performance interconnect.

Striping: Large files spread

LUMI
across OSTs
Files broken in Lust
chunks/stripes, distributed CLfiSepﬁ File
cyclically across a number of
chunk files/objects, each on «—00 20 40 60 01 24 41 61
a separate OST :
Transparent to the user with \ll/
respect to correctness
But large impact on v ' v \
performance 0-0 0-1 20 2-1 40 41 6-0 6-1
2 parameters: | | | |
* Size of the stripes A @;» A @;» A @;» A Q;»
* Number of OSTs N0 SN SN NI
Default on LUMI is to use AN N 7 N

only one OST

Striping: Large files spread LUMI
across OSTs

Files broken in 8 chunks or stripes
) N Lustre
chunks/stripes, distributed : File j

cyclically across a number of
chunk files/objects, each on

Client
a separate OST \/

«—| 00 20 40 60 01 21 41 61

Transparent to the user with | |
respect to correctness
But large impact on v }
performance 0-0 0-1 20 2-1 40 41 6-0 6
2 parameters: | |
e Size of the stripes (s (s

- @
, > 2
e Number of OSTs SIS S0 @y @"
Default on LUMI is to use @

only one OST

across 4 objects

Accessing a file

Open(unit=12, file:"OUt-dat")

Lustre
Clients

&

High-Performance Interconngct

G

Y

Metadata
Server
(MDS)

¥

{

Metadata

Target
(MDT)

Object
Storage
Server
(OSS)

Object Storage
Target
(OST)

Object
Storage
Server
(OSS)

Object Storage
Target
(OST)

Object
Storage
Server
(OSS)

Object Storage
Target
(OST)

Open(unit=12, file:"OUt.dat")

Accessing a file

Client queries MDS

Lustre
Clients

¢

&

High-Performance Interclm ct

¢

Metadata
Server

Object Object Object

Storage Storage Storage

Server Server Server

=2

Metadata \/ \/ \/

Target Object Storage Object Storage Object Storage
(MDT) Target Target Target

(OST) (OST)

(©sT)

Accessing a ﬁle open(unit=12, file="out.dat”)

Lustre

"

High-Performance Interconn CJ

Clients

&

¢
¢

MDS returns layout/location

Object
Mgtadata Jec

Eon-amn

Object Object

Storage Storage Storage

erver Server Server Server
DS) (0S9)

(OSS)

Y

@O

Metadata
Target Object Storage Object Storage Object Storage
(MDT) Target Target Target
(OST)

(OST) (OST)

Accessing a file LUMI

Clients

&

High-Performance Interconnfct

Subsequent read or write calls _— o Ot
3 orage orage

can talk directly to all OSSes o Server Server
(OSS) (OSS)

involved

@
0@«
Q¢

Metadata
Target Object Storage Object Storage Object Storage
(MDT) Target Target Target
(©ST) (OST) (OST)

LUMI

Parallelism is key!

« MDS access can be problematic
* Difficult to spread across multiple MDSes
* Small accesses, so each MDS doesn’t really exploit parallelism in RAID either

e But up to four levels of parallelism in reads and writes

* Engage multiple OSSes

« Which can each engage multiple OSTs

» That typically engage multiple disks in a RAID setup for reliability
e For an SSD file system: Modern SSDs are also highly parallel

* So large I/O operations needed
* Very small I/O operations won’t even benefit from RAID acceleration
» Relatively large stripe size for more efficient I/O at the OST level (especially
for hard drives)

* And even larger I/O operations needed to engage enough OSTs (but that
access can come from multiple nodes in the process)

Parallelism is key! (2) LUMI

« @ HPC file formats such as HDF5 and netCDF

 When used properly, very good bandwidth possible
* Old codes can be very good. But their authors have known floppy drives...

Parallelism is key! (2) LUMI

« @ HPC file formats such as HDF5 and netCDF

 When used properly, very good bandwidth possible
* Old codes can be very good. But their authors have known floppy drives...

» & Codes that open one or more files per MPI rank
 Won’t scale to large numbers of ranks
» Disaster for MDS as files will be opened more or less simultaneously

» Potential disaster for ODS also as each ODS will serve many files with
writes or reads coming in simultaneously

* Also in old codes that were never meant to scale to 1000s or cores

Parallelism is key! (2) LUMI

« @ HPC file formats such as HDF5 and netCDF

 When used properly, very good bandwidth possible
* Old codes can be very good. But their authors have known floppy drives...

» & Codes that open one or more files per MPI rank
 Won’t scale to large numbers of ranks
» Disaster for MDS as files will be opened more or less simultaneously

» Potential disaster for ODS also as each ODS will serve many files with
writes or reads coming in simultaneously

» Also in old codes that were never meant to scale to 1000s or cores
« & & Abuse the file system as an unstructured database by dumping
data in thousands or millions of small files with each one data element
» Local SSD not really a solution as you “own” a node only shortly
* A Python or conda software installation by itself is already an example

How to determine the striping LU MI
value?

* Small files accessed sequentially: & & &

* Try to use all OSTs without overloading them.

» #files = #0STs: stripe count 1 is best

 #files = 1: Set the stripe count to #0STs, or a smaller number if the
performance plateaus (benchmarking needed!). The latter will
happen if not enough Lustre clients are used simultaneously to
access the file.

» #files < #0STs: Chose such that stripe count * #files = #0STs.
E.g.: 32 OSTs and 8 files: Use a stripe count of 4.

e Let the system choose the OSTs, don't try to impose them.

* An ideal stripe size will usually be 1 MB or more.
Maximum value is 4 GB but that is only useful for very large files.

Managing the striping

parameters (1)

LUMI

* The basic command line tool to manage striping in lustre is the 1fs

command.

* Use Lfs df -h to getinformation about the file systems
Available Use%

UUID

lustrefl-MDTOO00 UUID
lustrefl-MDTO001 UUID
lustrefl-MDT0002 UUID
lustrefl-MDTO003 UUID
lustrefl-0STOOOO UUID
lustrefl-0STOOO1 UUID
lustrefl-0STOO02 UUID

bytes

11
11
11
11
121
121
121.

8T
8T
8T
8T
3T
3T

3T

* A way to find the number of OSTs

Used

16

2
2
21
21
21

.8G
4,

1G

.8G
.7G
AT
8T
AT

11
11
11
11
08

98

6T
6T
AT
AT
3T
98.
AT

2T

1%
1%
1%
1%
19%
19%
19%

Mounted on

/pfs/lustrefl[MDT:
/pfs/lustrefl[MDT:
/pfs/lustrefl[MDT:
/pfs/lustrefl[MDT:
/pfs/lustrefl[OST:
/pfs/lustrefl[0ST:
/pfs/lustrefl[OST:

Managing the striping LUM |
parameters (2)

 Use Lfs getstripe to check striping information at the directory or file

level
$ Lfs getstripe -d /appl/lumi/SW

Only show directory itself

Managing the striping LUM |
parameters (2)

 Use Lfs getstripe to check striping information at the directory or file

level
$ Lfs getstripe -d /appl/lumi/SW
stripe count: 1 stripe size: 1048576 pattern: O stripe offset: -1

Managing the striping LUM |
parameters (2)

« Use Lfs getstripe to check striping information at the directory or file

level
$ Ufs getstripe -d /appl/lumi/SW
stripe count: 1 stripe size: 1048576 pattern: O stripe offset: -1

$ Lfs getstripe -d --raw /appl/lumi/SW
stripe count: 0 stripe size: 0 pattern: O stripe offset: -1

\ 7)
Actually the defaults for the file system Let the MDS chose

Managing the striping LUM |
parameters (2)

 Use Lfs getstripe to check striping information at the directory or file

level
$ Ufs getstripe -d /appl/lumi/SW
stripe count: 1 stripe size: 1048576 pattern: O stripe offset: -1

$ Lfs getstripe -d --raw /appl/lumi/SW
stripe count: 0 stripe size: 0 pattern: 0 stripe offset: -1

$ Lfs getstripe /appl/lumi/LUMI-SoftwareStack/etc/motd.txt
/appl/lumi/LUMI-SoftwareStack/etc/motd. txt

Ilmm stripe count: 1

Ilmm stripe size: 1048576

lmm_pattern: raido

Ilmm layout gen: ¢)

Ilmm stripe offset: 2

obdid objid objid group
2 \ &319061 0x116c6f55 0

OSTs for the file

Managing the striping LUM |
parameters (3)

* Use Lfs setstripe to set the striping information

module use /appl/local/training/modules/2day-20240502
module load lumi-training-tools . . .
mkdir testdir e Default striping for this directory
1fs setstripe -S 2m -c 4 testdir <=

cd testdir

mkfile 2g testfilel

1fs getstripe testfilel

testfilel

Ilmm stripe count: 4

lmm stripe size: 2097152

A A A A A A A

lmm pattern: raido
lmm layout gen: 0
Ilmm stripe offset: 28
obdidx objid objid grou

P
28 66250987 Ox3f2e8eb 0
30 66282908 Ox313659c 0
1 71789920 0x4476d60 0
5 71781120 0x4474b00 0

Managing the striping LUM |
parameters (3)

* Use Lfs setstripe to set the striping information

module use /appl/local/training/modules/2day-20240502
module load lumi-training-tools . . .
mkdir testdir el Default striping for this directory

1fs setstripe -S 2m -c 4 testdir <

nkfile 2g testfilel <— Tool to create a new file of given size (2G here)

Lfs getstripe testfilel
testfilel

Ilmm stripe count: 4

lmm stripe size: 2097152

A A A A A A A

lmm pattern: raido
lmm layout gen: 0
Ilmm stripe offset: 28
obdidx objid objid grou

P
28 66250987 Ox3f2e8eb 0
30 66282908 Ox313659c 0
1 71789920 0x4476d60 0
5 71781120 0x4474b00 0

Managing the striping LUM |
parameters (3)

* Use Lfs setstripe to set the striping information
module use /appl/local/training/modules/2day-20240502

dule load lumi-training-tool . . . 4
ﬁﬁdirete‘s’idir”ml raining-roots S Default striping for this directory

1fs setstripe -S 2m -c 4 testdir <

nkfile 2g testfilel <— Tool to create a new file of given size (2G here)

Lfs getstripe testfilel

A A A A A A A

testfilel
lmm_stripe_count: 4 el And we get the values that we set for the directory
lmm stripe size: 2097152
lmm pattern: raido
lmm layout gen: 0
Imm_stripe offset: 28
obdidx .~ objid objid group
28 66250987 0x3f2e8eb 0
30 66282908 0x3f3659c 0
1 71789920 0x4476d60 0
5 71781120 0x4474b00 0
-

The 4 OSTs

Managing the striping LUM |
parameters (4)

 Use Lfs setstripe to set the striping information

$ Lfs setstripe -S 16m -c 2 testfile2 <
$ 1s —lh Create an empty file with given striping

total O
-rw-rw---- 1 XXXXXXXX project 462000000 2.0G Jan 15 16:17 testfilel
-rw-rw---- 1 XXXXXXXX project 462000000 0 Jan 15 16:23 testfile2
$ Lfs getstripe testfile2
testfile2
Imm_stripe count: 2
lmm_stripe_size: 16777216 < BN ols QW Rl R 1 S N SR E IRV RN (O M R[S
lmm pattern: raido
Imm_layout gen: 0]
lmm stripe offset: 10
obdidx ~~ objid objid group
10 71752411 0x446dadb 0
14 71812909 0x447c72d 0
-

The 2 OSTs

The metadata servers (1) LUMI

e Finite and shared resource

* Involved in many file system operations:
* Create/open/close
» Get attributes
* Managing file locking
* Slow or variable filesystem performance when overstressed
» Less than 200k operations per second, depending on operation type also!

The metadata servers (2) LUMI

* Important to be careful with what you do
* E.g., Ls -lisrather costly on Lustre

» Access to many small files from many processes is not a good idea (think
Python): Run from a container or move to /tmp (which will eat from your
RAM). Use file formats as HDF5, ADIOS, ...

* The filesystem is not a communication device for shuffling data between
nodes

« Avoid very large directories
 Use Lfs find instead of find
« And many more tips for programmers...

Lustre on LUMI LUMI

e LUMI-P:
» 4 disk based storage systems
« 18 PB capacity each
« 240 GB/s aggregated bandwidth each
« 2 MDTs (1 per MDS), 32 OSTs (2 per OSS)
» Serves /users, /project and /scratch

 LUMI-F
« Solid State Drive based storage system
* 8.5 PB capacity
 >2 TB/s aggregated bandwidth
« 4 MDTs (1 per MDS) and 72 OSTs (1 per OSS)
» Serves /flash

LUMI

Questions?

	Files on LUMI: Using Lustre
	File systems on LUMI
	Lustre building blocks
	Lustre building blocks
	Lustre building blocks
	Lustre building blocks
	Lustre building blocks
	Lustre building blocks (2)
	Lustre building blocks (2)
	Lustre building blocks (2)_clipboard0
	Striping: Large files spread across OSTs
	Slide 13
	Accessing a file
	Accessing a file_clipboard0
	Accessing a file
	Accessing a file
	Parallelism is key!
	Slide 20
	Parallelism is key! (2)
	Slide 22
	How to determine the striping value?
	Managing the striping parameters (1)
	Managing the striping parameters (2)
	Managing the striping parameters (2)
	Managing the striping parameters (2)
	Managing the striping parameters (2)
	Managing the striping parameters (3)
	Managing the striping parameters (3)
	Managing the striping parameters (3)
	Managing the striping parameters (4)
	The metadata servers (1)
	The metadata servers (2)
	Lustre on LUMI
	Questions?

