G
’

;...

¢

-

i

-

Jorik van Kemenade

Process and Thread Distribution and
LUMI User Support Team (LUST), SURF

Binding
October 2025

Slides updated from previous version,
authored by Kurt Lust (LUST, UAntwerp

What are we talking about? LUMI

* Distribute processes and threads across the available resources for the job
* and bind them to the resources to ensure they stay there and only use the assigned
resources
* Across nodes: Only distribution
* Within a node: Binding necessary

* System software level (Linux/ROCm/Slurm):
* Control groups used at the job and job step level, sometimes at the task level
* Affinity mask to control where a thread can get scheduled
* ROCm runtime also has a mechanism to control access to GPUs

* Tools for verification in the lumi-CPEtools modules

When/where is it done? LUMI

* Slurm level
* Creation of allocation: Slurm reserves resources at the node level using control groups
* Creation of job step:
* Distributes tasks across nodes and cores/hardware threads on nodes

* Default in most cases: Binds tasks to CPUs (affinity mask) and GPUs (control groups
unfortunately)

* Application runtime library level
* Cray MPICH can renumber the ranks and bind to NICs

* OpenMP runtime: select number of CPU threads and bind threads within the resources of a
task using affinity masks

* ROCm runtime: Select GPUs using ROCR_VISIBLE_DEVICES
* Does not always make sense on nodes that are not job-exlusive!

Why do | need this? LUMI

* Importance of memory locality at all levels (cache and main memory)
* E.g.: MPI application with 14 GB/rank so 16 ranks on node: Spread out across CCDs...

* Shared memory with lack of memory locality: Maybe need to bundle threads if the application
fits in a socket

* No solution that's always optimal!
* Short connection between CPU and GPU sometimes essential for fast communication
between both
* Cache-coherent accesses to GPU memory by the CPU

* Mapping of MPI ranks to reduce inter-node traffic and maximise intra-node traffic
which is much faster

* Also on the GPU: Map communication pattern on the topology of a node

Core numbering LUM I

* Linux core (actually hardware thread/virtual core) numbering does not reflect the
hierarchy

* Numbers 0-127 on LUMI-C are the first hardware thread on each physical core, 128-255 then
the second one, soiand i+128 map onto the same physical core

* On LUMI-G: Core 0-63 first hardware thread, core 64-127 second, soiand i+64 map onto the
same physical core
* Hardware threading on LUMIis turned on when booting a node

* Slurm does not turn hardware threading off, but doesn’t include the second hardware thread
in the affinity mask when multithreading is off

* Slurm only does so at the regular job step level
* The Slurm batch step will always see both hardware threads for each core!

* Technical discussion in the notes if you're interested

GPU Numbering (1) LUMI

* Very tricky

Out to network Out to network
* Numbering based on the PCle bus IDs
» Global numbering or bare-OS numbering o) ()
NUMA 1 I NUMA 3

8 cores, 16 threads L3

8 cores, 16 threads L3
(24-31, 88-95)

bl (56-63,120127)

8 cores, 16 threads L3

8 cores, 16 threads L3
(16-23, 80-87)

e (48-55,112-119)

8 cores, 16 threads
GPU6 (32-39,96103) || L3

8 cores, 16 threads
NUMAO NUMA 2
NIC
(hsn3)

Out to network Out to network

GPU Numbering (2) LUMI

* Very tricky
* Numbering based on the PCle bus IDs
* Global numbering or bare-OS numbering (0-7)
* Job-level control group
* New numbering starting from o: job-local numbering
* Same order though
* Task-level control group
* Yet another numbering starting from o: task-local numbering
* And a headache for MPI and RCCL applications

* Further restricting access via ROCR_VISIBLE_DEVICES will start yet another numbering
in, e.g., the HIP runtime

GPU Numbering - Remarks LUM I

* Very technical demonstrations in the notes

* Slurm works differently with CPUs and GPUs on LUMI
* CPUs: Control groups at the job level, after that affinity masks
* GPUs: Control groups atthe job and task level, even though ROCR_VISIBLE_DEVICES plays a
bit the role of an affinity mask

* Affinity masks work differently from ROCR_VISIBLE DEVICES

* Affinity masks always refer to the global / bare OS numbering of the hardware threads

* ROCR_VISIBLE_DEVICES numberingis based on the local numbering in the context where
the variable is used

* Affinity masks can only shrink as you go deeperin a hierarchy

* ROCR_VISIBILE_DEVICES, beingjust an environment variable, can be abused to gain access
to extra resources (within the confines of the control group)

Task distribution with Slurm (1) LUMI

e srun --distribution={block|cyclic|plane=<s>}[:{block|cyclic|fcyclic][,{Pack|NoPack}]

 Level 1: Distribution of tasks across nodes
* block: Fill first node in allocation, then fill second, etc.
* Pack: Fill completely before moving to the next node
* NoPack: More ballanced, trying to fill all nodes as equally as possible
e cyclic: First assign one task to each node, then from the first node again assign a second task, ...
* plane=<s>: As cyclic, but assigning s tasks at a time before moving on
* More options that we do not discuss

Task distribution with Slurm (2) LUMI

Example: 10 task of 32 cores each (quarter node) spread across 3 nodes:

e --distribution=block,pack

| nodel [N rodez [N nodes
0 1 2 3 4 5 6 7

* --distribution=block,nopack

| noder [N roce2 [nodes
0 1 2 3 4 5 6

« --distribution=cyclic

| noder [N rode2 [nodes
0 3 6 9 1 4 7

» --distribution=plane=2

node 1

0 1 6 7 2 3 8 9 4 5

Task distribution with Slurm (3) LUMI

srun --distribution={block]|cyclic|plane=<s>}[:{block|cyclic|fcyclic][,{Pack]|NoPack}]

Level 2: Distribution of tasks across cores
e L2 already binds tasks to sets of cores and will conflict with other binding mechanisms
* block: Consecutive sets of cores for each task

» cyclic: First assign one task to each socket on the first set of consecutive cores/virtual cores of
each socket, then assign a second task on each socket on the next set of cores, ...

e fcyclic: Will spread tasks out across sockets

* Not clear where this is useful on an AMD system except for cases with one task per node and
a lot of memory for that task

Level 3 not shown in this simplified version
Default: block:block:nopack but block:* resultsin block:cyclic

L2 and L3 distribution conflicts with the CPU binding mechanism that we will discuss
e But usefull with --cpus-per-task

Task-to-CPU binding with Slurm: Why? LUMI

* For memory access performance reasons, you may want to bundle all threads of a task
in a single L3 cache domain, a single NUMA domain or a single socket.

* And for very memory bandwidth intensive applications, underpopulating cores can
be an option

* Orinsome cases, if a shared memory code is very NUMA-friendly but cannot use all

cores efficiently, you may want to spread out the threads to have maximal memory
bandwidth.

* On LUMI-G, proper mapping of CCDs, GCDs and network interfaces can be very
important for good performance

* And the easiest way is often to reorder the tasks in a non-trivial way across the
CCDs.

Task-to-CPU binding with Slurm: How? LUMI

* Works with affinity masks
e srun --cpu-bind=[{quiet|verbose}, J<type>

* Some <type> options are for automatic binding

e --cpu-bind=threads is the default behaviour on LUMI
* Other options: See the manual

» Other <type> options define a list of task slots to be used
* Combination with - -distribution L2/L3 options does not make sense

e --cpu-bind=map _cpu:<cpu_id for_task 0>,<cpu_id for task 1>,... :Specifya
single hardware thread for each task on the node

* For MPI programs

e --cpu-bind=mask cpu:<mask for task 0>,<mask for_ task 1>,... :Specifyafinity
mask for each task on the node.

* For OpenMP or hybrid programs

Task-to-CPU binding with Slurm: Masks LY Ml

* Slurm uses hexadecimal masks to select which CPU cores tasks should bind to
* Bits orderedright to left
* First bit masks core #0
* Eachtask need its mask

* Single mask for 7 cores out of 8 (disabling core #0)
* Core numbers: 76543210
* Binarymask: 11111110
* Hexadecimal value: Oxfe
* Leading zeros can be omitted, but each element can still be very long

* See the notes for more information

Task-to-CPU binding with Slurm: Examples LUMI

* salloc --nodes=1 --partition=standard-g
module load LUMI/24.03 partition/G lumi-CPEtools/1.1-cpeGNU-24.03
srun --ntasks=8 --cpu-bind=map_cpu:49,57,17,25,1,9, 33,41 mpi_check -r

» Example will be relevant for LUMI-G

* srun --ntasks=8 --cpu-bind=mask_ cpu:\
7000000000000, 7200000000000000,7c0000, 7000000, 7e,7€00,7c00000000, 760000000000 \
hybrid check -r

* Like the above but now enabling 6 cores per CCD (1-6).
* Masks with use of both hardware threads can become extremely long, certainly on LUMI-C...

* Playing with - -cpus-per-task and then further restricting with OpenMP environment
variables may be the easier way on LUMI-C

* Do not combine with -c/--cpus-per-task!

Task-to-GPU binding with Slurm LUM I

* Currently not recommended on LUMI
* The control groups mechanism that Slurm uses breaks Peer2Peer IPC for GPU-aware MPI
e srun --gpu-bind=[{quiet|verbose}, J<type>

* Some <type> options are for automatic binding

* --gpu-bind=none is the most useful variant on LUMI: Turns off Slurm binding

» Useful when combined with - -gpus-per-task: unbind and then rebind, see later
e --gpu-bind=closest is broken on LUMI
* Other options: See the manual

» Other <type> options for fully manual distribution

e --gpu-bind=map cpu:<gpu_id for_task ©>,<gpu id for task 1>,... :Specifya
single GPU for each task on the node
e --gpu-bind=mask cpu:<mask_for task ©0>,<mask for_ task 1>, : Specify

multiple GPUs via a mask (but only 2 hexadecimal dlglts as there are only 8 GPUs per node)

MPI rank redistribution with Cray MPICH (1) LY Ml

» Default behaviour: MPI rank i on task i

* Cray MPICH has its own mechanism to reorder MPI ranks on Slurm tasks that is more
powerful than Slurm’s
* Best to use block distribution in Slurm for this.
* export MPICH_RANK_REORDER_METHOD=0 : Round-robin (like Slurm cyclic ordering)
* export MPICH_RANK_REORDER_METHOD=1 : Default, preserve the ordering from Slurm

* export MPICH_RANK_REORDER_METHOD=2 : Folded rank placement: First assign ranks on
first task slot of each node from o till ..., then assign a rank on the second task slot but now
from ... till o, and so on.

* export MPICH_RANK_REORDER_METHOD=3 : Custom ordering set by the file
MPICH_ RANK_ORDER (or $MPICH_RANK REORDER_FILE)

* The CPE has profiling tools that help you determine the optimal rank ordering
* See the 4/5-day Advanced LUMI course for more details

MPI rank redistribution with Cray MPICH (2) LY Ml

* Assume 12 quarter node tasks and 3 nodes, starting from a Slurm block ordering
* export MPICH_RANK REORDER_METHOD=© (Cyclic)

BT T
0O 3 6 9 1 4 7 10 2 5 8 11

* export MPICH RANK REORDER_METHOD=1 (Preserve Slurm)

BT T
o 1 2 3 4 5 6 7 8 9 10 11

« export MPICH_RANK_REORDER_METHOD=2 (Folded)

BT T
0O 5 6 11 1 4 7 10 2 3 8 9

MPI network adapter binding with Cray MPICH LY M|

* The environment variable MPICH_OFI_NIC_POLICY can be used to map processes
on Network Interface Controllers (NICs).

* Useful on LUMI-G as each node has 4 NICs

* Some values, first 2 are most relevant on LUMI:
* MPICH_OFI_NIC_POLICY=GPU: Use the NIC closesttothe GPU.

* Should be used if MPI operations mostly access GPU-attached memory regions
e MPICH_OFI_NIC_POLICY=NUMA:Use the NIC closest to the CPU cores of the MPI rank
* Should be used if MPlI communications are done from CPU buffers

* MPICH_OFI_NIC_POLICY=BLOCK: Consecutive local ranks equally distributed among NICs.
=) Default value

* MPICH_OFI_NIC_POLICY=ROUND-ROBIN: With 4 NICs: ranko, 4, 8, ...to NIC o, rank 1, 5, g,
...toNIC 3, etc.

* User mapping possible in combination with MPICH_OFI_NIC_MAPPING.

LUMI

Refining core binding in OpenMP

* Slurm will assign cores up to the task/process level
* Special case: Batch job step: All hardware threads of all cores of the first node of the job

* Thread-level control in OpenMP through library functions or environment variables
* Debug: export OMP_DISPLAY_AFFINITY=true
* export OMP_NUM THREADS=<num> :Set number of threads
* Multiple comma-separated numbers possible for multi-level parallelism

* OMP_PLACES to define the places to use for binding: hardware thread level, core level or
socket level, or an explicit list
* OMP_PROC_BIND to set distribution and binding strategy over places

* Single level parallelism: Experiment with omp_check and hybrid_checkin
lumi-CPEtools

Refining core binding in OpenMP: LUM I
OMP_PLACES

* Defines the places to use for binding
* OMP_PLACES=threads : OpenMP threads restricted to a single hardware thread (default)
* OMP_PLACES=cores : OpenMP threads restricted to both hardware threads of a core
* OMP_PLACES=socket : OpenMP threads restricted to all hardware threads of a single socket

* Ordefine aset of locations (very technical)
export OMP_PLACES="{90,1,2,3},{8,9,10,11},{16,17,18,19}”
export OMP_PLACES="{0:4}:3:8”

* Core numbers here are relative to those available to the process and not physical numbers

Refining core binding in OpenMP: LUM I
OMP_PROC_BIND

* Distribution over the places and binding selection:
* OMP_PROC_BIND=false : Turn off OpenMP thread binding, use the task affinity mask

* OMP_PROC_BIND=close : Try to keep the OpenMP threads as close as possible with one in
each place (unless oversubscribed)

* OMP_PROC_BIND=spread: Try to spread the OpenMP threads out as much as possible
* OMP_PROC_BIND=master : Keep threads in the same place as the master thread.
* Mostly useful if the place is a socket
* Multiple comma-separated options possible for nested parallelism
* Non-standard option in CCE: auto which is the default (other compilers: false)
* CCE does a very reasonable jobin many cases

* Many implementations have additional environment variables to tune the distribution

GPU binding with ROCR_VISIBLE_DEVICES LUMI

* Works at a very low level of the ROCm software stack

* Limits visibility to certain GPUs for all applications using the ROCm runtime
* Soalso covers HIP and OpenCL

* Value: Comma-separated list of all device indices exposed to the application
* Usesthe local numbering in the control group

* Differences with affinity masks for CPUs
* Affinity masks are OS-controled
* Therefore the OS can ensure you can only make masks more restrictive than the parent

* Affinity masks always use the global numbering of hardware threads while
ROCR_VISIBLE_DEVICES uses the local numberingin the control group

GPU binding: Optimal mapping (1)

0

N o o BAWN Rk

1-7, 65-71
9-15, 73-79
17-23, 81-87
25-32, 89-95
33-39, 97-103
41-47, 105-111
49-55, 113-119
57-63, 121-127

R O N o w N o b

LUMI

NUMA 1
8 cores, 16 threads L3
(24-31, 88-95)
8 cores, 16 threads L3

(16-23, 80-87)

NUMAO

Out to network Out to network
NIC NIC
(hsn1) (hsnO)
| NUMA 3
|
8 cores, 16 threads
e (56-63,120127) 3
8 cores, 16 threads
S (48-55,112119) || L3
8 cores, 16 threads
GPU6 (32-39,96-103) || 13
8 cores, 16 threads
GPU7 (40-47,104-111) L3
NUMA 2
NIC
(hsn3)

Out to network Out to network

GPU binding: Optimal mapping (2)

Available HWTs

0

N o o AW N

6

u A B O W N

49-55, 113-119
57-63,121-127
17-23, 81-87
25-32, 89-95
1-7,65-71
9-15, 73-79
33-39, 97-103
41-47,105-111

LUMI

NUMA 1
8 cores, 16 threads L3
(24-31, 88-95)
8 cores, 16 threads L3

(16-23, 80-87)

NUMAO

Out to network Out to network
NIC NIC
(hsn1) (hsnO)
| NUMA 3
|
8 cores, 16 threads
e (56-63,120127) 3
8 cores, 16 threads
S (48-55,112119) || L3
8 cores, 16 threads
GPU6 (32-39,96-103) || 13
8 cores, 16 threads
GPU7 (40-47,104-111) L3
NUMA 2
NIC
(hsn3)

Out to network Out to network

GPU binding: Embedded rings

* Greenring:0—1-3-2—-4—-5-7-6-0
* Redring:o-1-5—-4-6-7-3-2-0

Out to network Out to network
NIC NIC
(hsn1) (hsnO)
NUMA 1 | | NUMA 3
| |

8 cores, 16 threads 8 cores, 16 threads

(24-31, 88-95) = GPU3 = GeUl (56-63,120127) L3
8 cores, 16 threads 8 cores, 16 threads

(16-23, 80-87) s CE2 CEILC (48-55,112119) || L3

8 cores, 16 threads

- 8 cores, 16 threads
- . i (40_47’ 104_]”) :

NUMA 0 | NUMA 2

NIC
(hsn3)

Out to network Out to network

LUMI

GPU binding: Implementation LUM I

* Combination of three mechanisms:
* CPU side: Use --cpu-bind, orin some cases simply --cpus-per-task
* GPU side: Manual binding required by setting ROCR_VISIBLE_DEVICES because
Slurm uses a mechanism with unwanted side effects.

* Use a wrapper script that computes the proper GPU(s) from the Slurm local task id, sets
ROCR_VISIBLE_DEVICES and then starts the application

* NIC side: Ensure the use of the closest NIC for each task/rank by setting
MPICH_OFI_NIC_POLICY

GPU binding: Linear GCD, match cores (1) LY MI

#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8

cat << EOF > select gpu $SLURM JOB _ID

#!/bin/bash

export ROCR_VISIBLE DEVICES=\$SLURM_LOCALID _
exec \$*

EOF

chmod +x select gpu $SLURM JOB_ID

CPU_BIND1="map cpu:49,57,17,25,1,9,33,41"

srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND1 \
./select gpu $SLURM JOB ID gpu_check -1

GPU binding: Linear GCD, matchcores (2) LY MI

#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8

cat << EOF > select gpu $SLURM JOB_ID

#!/bin/bash

export ROCR_VISIBLE DEVICES=\$SLURM_ LOCALID

exec \$* e
EOF

chmod +x select gpu $SLURM JOB_ID

CPU_BIND2="mask cpu:0xfe000000000000,0x{fe00000000000000"

CPU_BIND2="$CPU BIND2,0xfe0000,0xfec000000"

CPU_BIND2="$CPU_BIND2,0xfe,0xfe00"

CPU_BIND2="$CPU BIND2,0xfe00000000,0xfec0000000000"

srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND2 \
./select gpu $SLURM JOB ID gpu_check -1

GPU binding: Linear CCD, match GCD (1) LUM I

#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8

cat << EOF > select_gpu $SLURM JOB_ID
#!/bin/bash
GPU ORDER=(4 52 3 6 7 0 1)

export ROCR_VISIBLE DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF

chmod +x select gpu $SLURM JOB_ID

CPU_BIND1="map cpu:1,9,17,25,33,41,49,57" _

srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND1 \
./select gpu $SLURM JOB ID gpu_check -1

GPU binding: Linear CCD, match GCD (2) LUM I

#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8

cat << EOF > select gpu $SLURM JOB_ID

#!/bin/bash

GPU ORDER=(4 52 3 6 7 0 1)

export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*

EOF

chmod +x select gpu $SLURM JOB_ID

CPU_BIND2="mask_cpu"

CPU_BIND2="$CPU_BIND2:0x00000000000000fe, 0x000000000000fc00"

CPU_BIND2="$CPU BIND2,0x0000000000fc0000,0x00000000fc000000"

CPU BIND2= "$CPU BIND2,0x0000001Tc00000000, 0x0000Tc0000000000"

CPU_BIND2="$CPU BIND2,0x00fec000000000000,0xfec00000000000000"

srun --ntasks= $((SLURM NNODES*8)) --cpu- bind= $CPU_BIND2 \
./select gpu $SLURM JOB ID gpu_check -1

l

GPU binding: Linear CCD, match GCD (3) LUMI

#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8

cat << EOF > select gpu $SLURM JOB_ID

#1/bin/bash —

GPU ORDER=(4 52 3 6 7 0 1)

export ROCR_VISIBLE DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*

EOF

chmod +x select gpu $SLURM JOB_ID

srun --ntasks=$((SLURM_NNODES*8)) --cpus-per-task=7 \ _

./select gpu $SLURM JOB ID gpu_check -1

export OMP_NUM THREADS=6 _
srun --ntasks=$((SLURM_NNODES*8)) --cpus-per-task=7 \

./select gpu $SLURM JOB ID gpu_check -1

LUMI

GPU binding: Green ring (1)

Out to network Out to network

NIC NIC
6 49-55,113-119 el (her®)
NUMA 1 I NUMA 3
11 7 5763,121-127 | R I o3 = oru1 el T
2 3 3 25-32,89-95 il \/ 1]
3 B I ——— *RSeE SERm NI
1-7, 65-71 X
4 4 0 7, 65 7 - . GPUG 8(333313&25%(15 L3
5 5 1 9-15,73-79
6 7 5 41-47,105-111 -. GPU7 8 gores, 6threncs || |5
7 6 4 33-39,97-103 NUMAS ” HumAZ
(hsn3)

Out to network

Out to network

GPU binding: Green ring (2) LUMI

#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8

cat << EOF > select_gpu $SLURM JOB_ID
#!/bin/bash
GPU ORDER=(0 1 3 2 4 5 7 6)

export ROCR_VISIBLE DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF

chmod +x select gpu $SLURM JOB_ID

CPU_BIND1="map_cpu:49,57,25,17,1,9,41,33" _

srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND1 \
./select gpu $SLURM JOB ID gpu_check -1

GPU binding: Green ring (3)

cat << EOF > select_gpu_ $SLURM JOB_ID

#!/bin/bash

GPU ORDER=(® 1 3 2 4 5 7 6)

export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*

EOF

chmod +x select_gpu_ $SLURM_JOB_ID

CCD_MASK=(0x00000000000000fe
0x000000000000f 00
0x00000000001 0000
0x00000000f 000000
0x000000f 00000000
0x0000f 0000000000
0x00fe000000000000
OxTe00000000000000

CPU_BIND2="mask_ cpu"

CPU_BIND2="$CPU_BIND2:${CCD_MASK[6]},${CCD_MASK[7]}"

CPU_BIND2="$CPU_BIND2,${CCD _MASK[3]},${CCD_MASK[2]}"

CPU_BIND2="$CPU_BIND2,${CCD_MASK[@]},${CCD_MASK[1]}"

CPU_BIND2="$CPU BIND2,${CCD _MASK[5]},${CCD_MASK[4]}"

srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND2 \

./select _gpu $SLURM JOB_ID gpu_check -1

LUMI

G

E—

“Allocate by resources” partitions LUMI

* Proper binding not possible unless exclusively allocating entire nodes only

* Slurm will use a control group per task for the GPUs

* You almost have to use --gpus-per-task to ensure that GPUs and tasks are on the
same nodes (unless you use just a single node)

* Problems with Peer2Peer IPC

* Solution:
* Turn off with - -gpu-bind=none
* This will number visible GPUs for the job on each node from o,
» and we can then again use the local task ID to assign a GPU to each task via

ROCR_VISIBLE_DEVICES viathe select_gpu scripttrick.
» Optimal mapping is not possible, but a proper setting of
MPICH_OFI_NIC_POLICY may still make sense.

LUMI

Questions?

	Slide 1: Process and Thread Distribution and Binding
	Slide 2: What are we talking about?
	Slide 3: When/where is it done?
	Slide 4: Why do I need this?
	Slide 5: Core numbering
	Slide 6: GPU Numbering (1)
	Slide 7: GPU Numbering (2)
	Slide 8: GPU Numbering - Remarks
	Slide 9: Task distribution with Slurm (1)
	Slide 10: Task distribution with Slurm (2)
	Slide 11: Task distribution with Slurm (3)
	Slide 12: Task-to-CPU binding with Slurm: Why?
	Slide 13: Task-to-CPU binding with Slurm: How?
	Slide 14: Task-to-CPU binding with Slurm: Masks
	Slide 15: Task-to-CPU binding with Slurm: Examples
	Slide 16: Task-to-GPU binding with Slurm
	Slide 17: MPI rank redistribution with Cray MPICH (1)
	Slide 18: MPI rank redistribution with Cray MPICH (2)
	Slide 19: MPI network adapter binding with Cray MPICH
	Slide 20: Refining core binding in OpenMP
	Slide 21: Refining core binding in OpenMP: OMP_PLACES
	Slide 22: Refining core binding in OpenMP: OMP_PROC_BIND
	Slide 23: GPU binding with ROCR_VISIBLE_DEVICES
	Slide 24: GPU binding: Optimal mapping (1)
	Slide 25: GPU binding: Optimal mapping (2)
	Slide 26: GPU binding: Embedded rings
	Slide 27: GPU binding: Implementation
	Slide 28: GPU binding: Linear GCD, match cores (1)
	Slide 29: GPU binding: Linear GCD, match cores (2)
	Slide 30: GPU binding: Linear CCD, match GCD (1)
	Slide 31: GPU binding: Linear CCD, match GCD (2)
	Slide 32: GPU binding: Linear CCD, match GCD (3)
	Slide 33: GPU binding: Green ring (1)
	Slide 34: GPU binding: Green ring (2)
	Slide 35: GPU binding: Green ring (3)
	Slide 36: “Allocate by resources” partitions
	Slide 37: Questions?

