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What are we talking about? LUMI

* Distribute processes and threads across the available resources for the job
* and bind them to the resources to ensure they stay there and only use the assigned
resources
* Across nodes: Only distribution
* Within a node: Binding necessary

* System software level (Linux/ROCm/Slurm):
* Control groups used at the job and job step level, sometimes at the task level
* Affinity mask to control where a thread can get scheduled
* ROCm runtime also has a mechanism to control access to GPUs

* Tools for verification in the lumi-CPEtools modules



When/where is it done? LUMI

* Slurm level
* Creation of allocation: Slurm reserves resources at the node level using control groups
* Creation of job step:
* Distributes tasks across nodes and cores/hardware threads on nodes

* Default in most cases: Binds tasks to CPUs (affinity mask) and GPUs (control groups
unfortunately)

* Application runtime library level
* Cray MPICH can renumber the ranks and bind to NICs

* OpenMP runtime: select number of CPU threads and bind threads within the resources of a
task using affinity masks

* ROCm runtime: Select GPUs using ROCR_VISIBLE_DEVICES
* Does not always make sense on nodes that are not job-exlusive!



Why do | need this? LUMI

* Importance of memory locality at all levels (cache and main memory)
* E.g.: MPI application with 14 GB/rank so 16 ranks on node: Spread out across CCDs...

* Shared memory with lack of memory locality: Maybe need to bundle threads if the application
fits in a socket

* No solution that's always optimal!
* Short connection between CPU and GPU sometimes essential for fast communication
between both
* Cache-coherent accesses to GPU memory by the CPU

* Mapping of MPI ranks to reduce inter-node traffic and maximise intra-node traffic
which is much faster

* Also on the GPU: Map communication pattern on the topology of a node



Core numbering LUM I

* Linux core (actually hardware thread/virtual core) numbering does not reflect the
hierarchy

* Numbers 0-127 on LUMI-C are the first hardware thread on each physical core, 128-255 then
the second one, soiand i+128 map onto the same physical core

* On LUMI-G: Core 0-63 first hardware thread, core 64-127 second, soiand i+64 map onto the
same physical core
* Hardware threading on LUMIis turned on when booting a node

* Slurm does not turn hardware threading off, but doesn’t include the second hardware thread
in the affinity mask when multithreading is off

* Slurm only does so at the regular job step level
* The Slurm batch step will always see both hardware threads for each core!

* Technical discussion in the notes if you're interested



GPU Numbering (1) LUMI

* Very tricky

Out to network Out to network
* Numbering based on the PCle bus IDs
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GPU Numbering (2) LUMI

* Very tricky
* Numbering based on the PCle bus IDs
* Global numbering or bare-OS numbering (0-7)
* Job-level control group
* New numbering starting from o: job-local numbering
* Same order though
* Task-level control group
* Yet another numbering starting from o: task-local numbering
* And a headache for MPI and RCCL applications

* Further restricting access via ROCR_VISIBLE_DEVICES will start yet another numbering
in, e.g., the HIP runtime



GPU Numbering - Remarks LUM I

* Very technical demonstrations in the notes

* Slurm works differently with CPUs and GPUs on LUMI
* CPUs: Control groups at the job level, after that affinity masks
* GPUs: Control groups atthe job and task level, even though ROCR_VISIBLE_DEVICES plays a
bit the role of an affinity mask

* Affinity masks work differently from ROCR_VISIBLE DEVICES

* Affinity masks always refer to the global / bare OS numbering of the hardware threads

* ROCR_VISIBLE_DEVICES numberingis based on the local numbering in the context where
the variable is used

* Affinity masks can only shrink as you go deeperin a hierarchy

* ROCR_VISIBILE_DEVICES, beingjust an environment variable, can be abused to gain access
to extra resources (within the confines of the control group)



Task distribution with Slurm (1) LUMI

e srun --distribution={block|cyclic|plane=<s>}[:{block|cyclic|fcyclic][,{Pack|NoPack}]

 Level 1: Distribution of tasks across nodes
* block: Fill first node in allocation, then fill second, etc.
* Pack: Fill completely before moving to the next node
* NoPack: More ballanced, trying to fill all nodes as equally as possible
e cyclic: First assign one task to each node, then from the first node again assign a second task, ...
* plane=<s>: As cyclic, but assigning s tasks at a time before moving on
* More options that we do not discuss



Task distribution with Slurm (2) LUMI

Example: 10 task of 32 cores each (quarter node) spread across 3 nodes:

e --distribution=block,pack

| nodel [N rodez [N nodes
0 1 2 3 4 5 6 7

* --distribution=block,nopack

| noder [N roce2 [ nodes
0 1 2 3 4 5 6

« --distribution=cyclic

| noder [N rode2 [ nodes
0 3 6 9 1 4 7

» --distribution=plane=2

node 1

0 1 6 7 2 3 8 9 4 5



Task distribution with Slurm (3) LUMI

srun --distribution={block]|cyclic|plane=<s>}[:{block|cyclic|fcyclic][,{Pack]|NoPack}]

Level 2: Distribution of tasks across cores
e L2 already binds tasks to sets of cores and will conflict with other binding mechanisms
* block: Consecutive sets of cores for each task

» cyclic: First assign one task to each socket on the first set of consecutive cores/virtual cores of
each socket, then assign a second task on each socket on the next set of cores, ...

e fcyclic: Will spread tasks out across sockets

* Not clear where this is useful on an AMD system except for cases with one task per node and
a lot of memory for that task

Level 3 not shown in this simplified version
Default: block:block:nopack but block:* resultsin block:cyclic

L2 and L3 distribution conflicts with the CPU binding mechanism that we will discuss
e But usefull with --cpus-per-task



Task-to-CPU binding with Slurm: Why? LUMI

* For memory access performance reasons, you may want to bundle all threads of a task
in a single L3 cache domain, a single NUMA domain or a single socket.

* And for very memory bandwidth intensive applications, underpopulating cores can
be an option

* Orinsome cases, if a shared memory code is very NUMA-friendly but cannot use all

cores efficiently, you may want to spread out the threads to have maximal memory
bandwidth.

* On LUMI-G, proper mapping of CCDs, GCDs and network interfaces can be very
important for good performance

* And the easiest way is often to reorder the tasks in a non-trivial way across the
CCDs.



Task-to-CPU binding with Slurm: How? LUMI

* Works with affinity masks
e srun --cpu-bind=[{quiet|verbose}, J<type>

* Some <type> options are for automatic binding

e --cpu-bind=threads is the default behaviour on LUMI
* Other options: See the manual

» Other <type> options define a list of task slots to be used
* Combination with - -distribution L2/L3 options does not make sense

e --cpu-bind=map _cpu:<cpu_id for_task 0>,<cpu_id for task 1>,... :Specifya
single hardware thread for each task on the node

* For MPI programs

e --cpu-bind=mask cpu:<mask for task 0>,<mask for_ task 1>,... :Specifyafinity
mask for each task on the node.

* For OpenMP or hybrid programs



Task-to-CPU binding with Slurm: Masks LY Ml

* Slurm uses hexadecimal masks to select which CPU cores tasks should bind to
* Bits orderedright to left
* First bit masks core #0
* Eachtask need its mask

* Single mask for 7 cores out of 8 (disabling core #0)
* Core numbers: 76543210
* Binarymask: 11111110
* Hexadecimal value: Oxfe
* Leading zeros can be omitted, but each element can still be very long

* See the notes for more information



Task-to-CPU binding with Slurm: Examples LUMI

* salloc --nodes=1 --partition=standard-g
module load LUMI/24.03 partition/G lumi-CPEtools/1.1-cpeGNU-24.03
srun --ntasks=8 --cpu-bind=map_cpu:49,57,17,25,1,9, 33,41 mpi_check -r

» Example will be relevant for LUMI-G

* srun --ntasks=8 --cpu-bind=mask_ cpu:\
7000000000000, 7200000000000000,7c0000, 7000000, 7e,7€00,7c00000000, 760000000000 \
hybrid check -r

* Like the above but now enabling 6 cores per CCD (1-6).
* Masks with use of both hardware threads can become extremely long, certainly on LUMI-C...

* Playing with - -cpus-per-task and then further restricting with OpenMP environment
variables may be the easier way on LUMI-C

* Do not combine with -c/--cpus-per-task!



Task-to-GPU binding with Slurm LUM I

* Currently not recommended on LUMI
* The control groups mechanism that Slurm uses breaks Peer2Peer IPC for GPU-aware MPI
e srun --gpu-bind=[{quiet|verbose}, J<type>

* Some <type> options are for automatic binding

* --gpu-bind=none is the most useful variant on LUMI: Turns off Slurm binding

» Useful when combined with - -gpus-per-task: unbind and then rebind, see later
e --gpu-bind=closest is broken on LUMI
* Other options: See the manual

» Other <type> options for fully manual distribution

e --gpu-bind=map cpu:<gpu_id for_task ©>,<gpu id for task 1>,... :Specifya
single GPU for each task on the node
e --gpu-bind=mask cpu:<mask_for task ©0>,<mask for_ task 1>, : Specify

multiple GPUs via a mask (but only 2 hexadecimal dlglts as there are only 8 GPUs per node)



MPI rank redistribution with Cray MPICH (1) LY Ml

» Default behaviour: MPI rank i on task i

* Cray MPICH has its own mechanism to reorder MPI ranks on Slurm tasks that is more
powerful than Slurm’s
* Best to use block distribution in Slurm for this.
* export MPICH_RANK_REORDER_METHOD=0 : Round-robin (like Slurm cyclic ordering)
* export MPICH_RANK_REORDER_METHOD=1 : Default, preserve the ordering from Slurm

* export MPICH_RANK_REORDER_METHOD=2 : Folded rank placement: First assign ranks on
first task slot of each node from o till ..., then assign a rank on the second task slot but now
from ... till o, and so on.

* export MPICH_RANK_REORDER_METHOD=3 : Custom ordering set by the file
MPICH_ RANK_ORDER (or $MPICH_RANK REORDER_FILE)

* The CPE has profiling tools that help you determine the optimal rank ordering
* See the 4/5-day Advanced LUMI course for more details



MPI rank redistribution with Cray MPICH (2) LY Ml

* Assume 12 quarter node tasks and 3 nodes, starting from a Slurm block ordering
* export MPICH_RANK REORDER_METHOD=© (Cyclic)

BT T
0O 3 6 9 1 4 7 10 2 5 8 11

* export MPICH RANK REORDER_METHOD=1 (Preserve Slurm)

BT T
o 1 2 3 4 5 6 7 8 9 10 11

« export MPICH_RANK_REORDER_METHOD=2 (Folded)

BT T
0O 5 6 11 1 4 7 10 2 3 8 9



MPI network adapter binding with Cray MPICH LY M|

* The environment variable MPICH_OFI_NIC_POLICY can be used to map processes
on Network Interface Controllers (NICs).

* Useful on LUMI-G as each node has 4 NICs

* Some values, first 2 are most relevant on LUMI:
* MPICH_OFI_NIC_POLICY=GPU: Use the NIC closesttothe GPU.

* Should be used if MPI operations mostly access GPU-attached memory regions
e MPICH_OFI_NIC_POLICY=NUMA:Use the NIC closest to the CPU cores of the MPI rank
* Should be used if MPlI communications are done from CPU buffers

* MPICH_OFI_NIC_POLICY=BLOCK: Consecutive local ranks equally distributed among NICs.
=) Default value

* MPICH_OFI_NIC_POLICY=ROUND-ROBIN: With 4 NICs: ranko, 4, 8, ...to NIC o, rank 1, 5, g,
...toNIC 3, etc.

* User mapping possible in combination with MPICH_OFI_NIC_MAPPING.



LUMI

Refining core binding in OpenMP

* Slurm will assign cores up to the task/process level
* Special case: Batch job step: All hardware threads of all cores of the first node of the job

* Thread-level control in OpenMP through library functions or environment variables
* Debug: export OMP_DISPLAY_AFFINITY=true
* export OMP_NUM THREADS=<num> :Set number of threads
* Multiple comma-separated numbers possible for multi-level parallelism

* OMP_PLACES to define the places to use for binding: hardware thread level, core level or
socket level, or an explicit list
* OMP_PROC_BIND to set distribution and binding strategy over places

* Single level parallelism: Experiment with omp_check and hybrid_checkin
lumi-CPEtools



Refining core binding in OpenMP: LUM I
OMP_PLACES

* Defines the places to use for binding
* OMP_PLACES=threads : OpenMP threads restricted to a single hardware thread (default)
* OMP_PLACES=cores : OpenMP threads restricted to both hardware threads of a core
* OMP_PLACES=socket : OpenMP threads restricted to all hardware threads of a single socket

* Ordefine aset of locations (very technical)
export OMP_PLACES="{90,1,2,3},{8,9,10,11},{16,17,18,19}”
export OMP_PLACES="{0:4}:3:8”

* Core numbers here are relative to those available to the process and not physical numbers



Refining core binding in OpenMP: LUM I
OMP_PROC_BIND

* Distribution over the places and binding selection:
* OMP_PROC_BIND=false : Turn off OpenMP thread binding, use the task affinity mask

* OMP_PROC_BIND=close : Try to keep the OpenMP threads as close as possible with one in
each place (unless oversubscribed)

* OMP_PROC_BIND=spread: Try to spread the OpenMP threads out as much as possible
* OMP_PROC_BIND=master : Keep threads in the same place as the master thread.
* Mostly useful if the place is a socket
* Multiple comma-separated options possible for nested parallelism
* Non-standard option in CCE: auto which is the default (other compilers: false)
* CCE does a very reasonable jobin many cases

* Many implementations have additional environment variables to tune the distribution



GPU binding with ROCR_VISIBLE_DEVICES LUMI

* Works at a very low level of the ROCm software stack

* Limits visibility to certain GPUs for all applications using the ROCm runtime
* Soalso covers HIP and OpenCL

* Value: Comma-separated list of all device indices exposed to the application
* Usesthe local numbering in the control group

* Differences with affinity masks for CPUs
* Affinity masks are OS-controled
* Therefore the OS can ensure you can only make masks more restrictive than the parent

* Affinity masks always use the global numbering of hardware threads while
ROCR_VISIBLE_DEVICES uses the local numberingin the control group



GPU binding: Optimal mapping (1)
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GPU binding: Optimal mapping (2)

Available HWTs
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GPU binding: Embedded rings

* Greenring:0—1-3-2—-4—-5-7-6-0
* Redring:o-1-5—-4-6-7-3-2-0

Out to network Out to network
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| |
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GPU binding: Implementation LUM I

* Combination of three mechanisms:
* CPU side: Use --cpu-bind, orin some cases simply --cpus-per-task
* GPU side: Manual binding required by setting ROCR_VISIBLE_DEVICES because
Slurm uses a mechanism with unwanted side effects.

* Use a wrapper script that computes the proper GPU(s) from the Slurm local task id, sets
ROCR_VISIBLE_DEVICES and then starts the application

* NIC side: Ensure the use of the closest NIC for each task/rank by setting
MPICH_OFI_NIC_POLICY



GPU binding: Linear GCD, match cores (1) LY MI

#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8

cat << EOF > select gpu $SLURM JOB _ID

#!/bin/bash

export ROCR_VISIBLE DEVICES=\$SLURM_LOCALID _
exec \$*

EOF

chmod +x select gpu $SLURM JOB_ID

CPU_BIND1="map cpu:49,57,17,25,1,9,33,41"

srun --ntasks=$( (SLURM_NNODES*8)) --cpu-bind=$CPU_BIND1 \
./select gpu $SLURM JOB ID gpu_check -1



GPU binding: Linear GCD, matchcores (2) LY MI

#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8

cat << EOF > select gpu $SLURM JOB_ID

#!/bin/bash

export ROCR_VISIBLE DEVICES=\$SLURM_ LOCALID

exec \$* e
EOF

chmod +x select gpu $SLURM JOB_ID

CPU_BIND2="mask cpu:0xfe000000000000,0x{fe00000000000000"

CPU_BIND2="$CPU BIND2,0xfe0000,0xfec000000"

CPU_BIND2="$CPU_BIND2,0xfe,0xfe00"

CPU_BIND2="$CPU BIND2,0xfe00000000,0xfec0000000000"

srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND2 \
./select gpu $SLURM JOB ID gpu_check -1



GPU binding: Linear CCD, match GCD (1) LUM I

#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8

cat << EOF > select_gpu $SLURM JOB_ID
#!/bin/bash
GPU ORDER=(4 52 3 6 7 0 1)

export ROCR_VISIBLE DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF

chmod +x select gpu $SLURM JOB_ID

CPU_BIND1="map cpu:1,9,17,25,33,41,49,57" _

srun --ntasks=$( (SLURM_NNODES*8)) --cpu-bind=$CPU_BIND1 \
./select gpu $SLURM JOB ID gpu_check -1



GPU binding: Linear CCD, match GCD (2) LUM I

#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8

cat << EOF > select gpu $SLURM JOB_ID

#!/bin/bash

GPU ORDER=(4 52 3 6 7 0 1)

export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*

EOF

chmod +x select gpu $SLURM JOB_ID

CPU_BIND2="mask_cpu"

CPU_BIND2="$CPU_BIND2:0x00000000000000fe, 0x000000000000fc00"

CPU_BIND2="$CPU BIND2,0x0000000000fc0000,0x00000000fc000000"

CPU BIND2= "$CPU BIND2,0x0000001Tc00000000, 0x0000Tc0000000000"

CPU_BIND2="$CPU BIND2,0x00fec000000000000,0xfec00000000000000"

srun --ntasks= $((SLURM NNODES*8)) --cpu- bind= $CPU_BIND2 \
./select gpu $SLURM JOB ID gpu_check -1

l



GPU binding: Linear CCD, match GCD (3) LUMI

#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8

cat << EOF > select gpu $SLURM JOB_ID

#1/bin/bash —

GPU ORDER=(4 52 3 6 7 0 1)

export ROCR_VISIBLE DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*

EOF

chmod +x select gpu $SLURM JOB_ID

srun --ntasks=$((SLURM_NNODES*8)) --cpus-per-task=7 \ _

./select gpu $SLURM JOB ID gpu_check -1

export OMP_NUM THREADS=6 _
srun --ntasks=$( (SLURM_NNODES*8)) --cpus-per-task=7 \

./select gpu $SLURM JOB ID gpu_check -1



LUMI

GPU binding: Green ring (1)
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GPU binding: Green ring (2) LUMI

#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8

cat << EOF > select_gpu $SLURM JOB_ID
#!/bin/bash
GPU ORDER=(0 1 3 2 4 5 7 6)

export ROCR_VISIBLE DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF

chmod +x select gpu $SLURM JOB_ID

CPU_BIND1="map_cpu:49,57,25,17,1,9,41,33" _

srun --ntasks=$( (SLURM_NNODES*8)) --cpu-bind=$CPU_BIND1 \
./select gpu $SLURM JOB ID gpu_check -1




GPU binding: Green ring (3)

cat << EOF > select_gpu_ $SLURM JOB_ID

#!/bin/bash

GPU ORDER=(® 1 3 2 4 5 7 6)

export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*

EOF

chmod +x select_gpu_ $SLURM_JOB_ID

CCD_MASK=( 0x00000000000000fe
0x000000000000f 00
0x00000000001 0000
0x00000000f 000000
0x000000f 00000000
0x0000f 0000000000
0x00fe000000000000
OxTe00000000000000

CPU_BIND2="mask_ cpu"

CPU_BIND2="$CPU_BIND2:${CCD_MASK[6]},${CCD_MASK[7]}"

CPU_BIND2="$CPU_BIND2,${CCD _MASK[3]},${CCD_MASK[2]}"

CPU_BIND2="$CPU_BIND2,${CCD_MASK[@]},${CCD_MASK[1]}"

CPU_BIND2="$CPU BIND2,${CCD _MASK[5]},${CCD_MASK[4]}"

srun --ntasks=$( (SLURM_NNODES*8)) --cpu-bind=$CPU_BIND2 \

./select _gpu $SLURM JOB_ID gpu_check -1

LUMI

G

E—



“Allocate by resources” partitions LUMI

* Proper binding not possible unless exclusively allocating entire nodes only

* Slurm will use a control group per task for the GPUs

* You almost have to use --gpus-per-task to ensure that GPUs and tasks are on the
same nodes (unless you use just a single node)

* Problems with Peer2Peer IPC

* Solution:
* Turn off with - -gpu-bind=none
* This will number visible GPUs for the job on each node from o,
» and we can then again use the local task ID to assign a GPU to each task via

ROCR_VISIBLE_DEVICES viathe select_gpu scripttrick.
» Optimal mapping is not possible, but a proper setting of
MPICH_OFI_NIC_POLICY may still make sense.



LUMI

Questions?
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