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What are we talking about?

• Distribute processes and threads across the available resources for the job

• and bind them to the resources to ensure they stay there and only use the assigned 
resources
• Across nodes: Only distribution

• Within a node: Binding necessary

• System software level (Linux/ROCm/Slurm):
• Control groups used at the job and job step level, sometimes at the task level

• Affinity mask to control where a thread can get scheduled

• ROCm runtime also has a mechanism to control access to GPUs

• Tools for verification in the lumi-CPEtools modules



When/where is it done?

• Slurm level
• Creation of allocation: Slurm reserves resources at the node level using control groups

• Creation of job step: 

• Distributes tasks across nodes and cores/hardware threads on nodes

• Default in most cases: Binds tasks to CPUs (affinity mask) and GPUs (control groups 
unfortunately)

• Application runtime library level
• Cray MPICH can renumber the ranks and bind to NICs

• OpenMP runtime: select number of CPU threads and bind threads within the resources of a 
task using affinity masks

• ROCm runtime: Select GPUs using ROCR_VISIBLE_DEVICES

• Does not always make sense on nodes that are not job-exlusive!



Why do I need this?

• Importance of memory locality at all levels (cache and main memory)
• E.g.: MPI application with 14 GB/rank so 16 ranks on node: Spread out across CCDs…

• Shared memory with lack of memory locality: Maybe need to bundle threads if the application 
fits in a socket

• No solution that’s always optimal!

• Short connection between CPU and GPU sometimes essential for fast communication 
between both
• Cache-coherent accesses to GPU memory by the CPU

• Mapping of MPI ranks to reduce inter-node traffic and maximise intra-node traffic 
which is much faster
• Also on the GPU: Map communication pattern on the topology of a node



Core numbering

• Linux core (actually hardware thread/virtual core) numbering does not reflect the 
hierarchy
• Numbers 0-127 on LUMI-C are the first hardware thread on each physical core, 128-255 then 

the second one, so i and i+128 map onto the same physical core

• On LUMI-G: Core 0-63 first hardware thread, core 64-127 second, so i and i+64 map onto the 
same physical core

• Hardware threading on LUMI is turned on when booting a node
• Slurm does not turn hardware threading off, but doesn’t include the second hardware thread 

in the affinity mask when multithreading is off

• Slurm only does so at the regular job step level

• The Slurm batch step will always see both hardware threads for each core!

• Technical discussion in the notes if you’re interested



GPU Numbering (1)

• Very tricky

• Numbering based on the PCIe bus IDs
• Global numbering or bare-OS numbering



GPU Numbering (2)

• Very tricky

• Numbering based on the PCIe bus IDs
• Global numbering or bare-OS numbering (0-7)

• Job-level control group
• New numbering starting from 0: job-local numbering 

• Same order though

• Task-level control group

• Yet another numbering starting from 0: task-local numbering

• And a headache for MPI and RCCL applications

• Further restricting access via ROCR_VISIBLE_DEVICES will start yet another numbering 
in, e.g., the HIP runtime



GPU Numbering - Remarks

• Very technical demonstrations in the notes

• Slurm works differently with CPUs and GPUs on LUMI
• CPUs: Control groups at the job level, after that affinity masks

• GPUs: Control groups at the job and task level, even though ROCR_VISIBLE_DEVICES plays a 
bit the role of an affinity mask

• Affinity masks work differently from ROCR_VISIBLE_DEVICES
• Affinity masks always refer to the global / bare OS numbering of the hardware threads

• ROCR_VISIBLE_DEVICES numbering is based on the local numbering in the context where 
the variable is used

• Affinity masks can only shrink as you go deeper in a hierarchy

• ROCR_VISIBILE_DEVICES, being just an environment variable, can be abused to gain access 
to extra resources (within the confines of the control group)



Task distribution with Slurm (1)

• srun --distribution={block|cyclic|plane=<s>}[:{block|cyclic|fcyclic][,{Pack|NoPack}]

• Level 1: Distribution of tasks across nodes
• block: Fill first node in allocation, then fill second, etc.

• Pack: Fill completely before moving to the next node

• NoPack: More ballanced, trying to fill all nodes as equally as possible

• cyclic: First assign one task to each node, then from the first node again assign a second task, …

• plane=<s>: As cyclic, but assigning s tasks at a time before moving on

• More options that we do not discuss



Task distribution with Slurm (2)

Example: 10 task of 32 cores each (quarter node) spread across 3 nodes:

• --distribution=block,pack

• --distribution=block,nopack

• --distribution=cyclic

• --distribution=plane=2

node 1 node 2 node 3

0 1 2 3 4 5 6 7 8 9

node 1 node 2 node 3

0 1 2 3 4 5 6 7 8 9

node 1 node 2 node 3

0 3 6 9 1 4 7 2 5 8

node 1 node 2 node 3

0 1 6 7 2 3 8 9 4 5



Task distribution with Slurm (3)

• srun --distribution={block|cyclic|plane=<s>}[:{block|cyclic|fcyclic][,{Pack|NoPack}]

• Level 2: Distribution of tasks across cores
• L2 already binds tasks to sets of cores and will conflict with other binding mechanisms

• block: Consecutive sets of cores for each task
• cyclic: First assign one task to each socket on the first set of consecutive cores/virtual cores of 

each socket, then assign a second task on each socket on the next set of cores, …
• fcyclic: Will spread tasks out across sockets

• Not clear where this is useful on an AMD system except for cases with one task per node and 
a lot of memory for that task

• Level 3 not shown in this simplified version

• Default: block:block:nopack but block:* results in block:cyclic

• L2 and L3 distribution conflicts with the CPU binding mechanism that we will discuss
• But usefull with --cpus-per-task



Task-to-CPU binding with Slurm: Why?

• For memory access performance reasons, you may want to bundle all threads of a task 
in a single L3 cache domain, a single NUMA domain or a single socket.

• And for very memory bandwidth intensive applications, underpopulating cores can 
be an option

• Or in some cases, if a shared memory code is very NUMA-friendly but cannot use all 
cores efficiently, you may want to spread out the threads to have maximal memory 
bandwidth.

• On LUMI-G, proper mapping of CCDs, GCDs and network interfaces can be very 
important for good performance

• And the easiest way is often to reorder the tasks in a non-trivial way across the 
CCDs.



Task-to-CPU binding with Slurm: How?

• Works with affinity masks

• srun --cpu-bind=[{quiet|verbose},]<type>

• Some <type> options are for automatic binding
• --cpu-bind=threads is the default behaviour on LUMI

• Other options: See the manual

• Other <type> options define a list of task slots to be used
• Combination with --distribution L2/L3 options does not make sense

• --cpu-bind=map_cpu:<cpu_id_for_task_0>,<cpu_id_for_task_1>,... : Specify a 
single hardware thread for each task on the node

• For MPI programs

• --cpu-bind=mask_cpu:<mask_for_task_0>,<mask_for_task_1>,... : Specify afinity 
mask for each task on the node.

• For OpenMP or hybrid programs



Task-to-CPU binding with Slurm: Masks

• Slurm uses hexadecimal masks to select which CPU cores  tasks should bind to
• Bits ordered right to left

• First bit masks core #0

• Each task need its mask

• Single mask for 7 cores out of 8 (disabling core #0)
• Core numbers:  76543210

• Binary mask:    11111110

• Hexadecimal value:   0xfe

• Leading zeros can be omitted, but each element can still be very long

• See the notes for more information



Task-to-CPU binding with Slurm: Examples

• salloc --nodes=1 --partition=standard-g
module load LUMI/24.03 partition/G lumi-CPEtools/1.1-cpeGNU-24.03
srun --ntasks=8 --cpu-bind=map_cpu:49,57,17,25,1,9,33,41 mpi_check –r

• Example will be relevant for LUMI-G

• srun --ntasks=8 --cpu-bind=mask_cpu:\
7e000000000000,7e00000000000000,7e0000,7e000000,7e,7e00,7e00000000,7e0000000000 \
hybrid_check –r

• Like the above but now enabling 6 cores per CCD (1-6).

• Masks with use of both hardware threads can become extremely long, certainly on LUMI-C…

• Playing with --cpus-per-task and then further restricting with OpenMP environment 
variables may be the easier way on LUMI-C

• Do not combine with -c/--cpus-per-task!



Task-to-GPU binding with Slurm

• Currently not recommended on LUMI
• The control groups mechanism that Slurm uses breaks Peer2Peer IPC for GPU-aware MPI

• srun --gpu-bind=[{quiet|verbose},]<type>

• Some <type> options are for automatic binding
• --gpu-bind=none is the most useful variant on LUMI: Turns off Slurm binding

• Useful when combined with --gpus-per-task: unbind and then rebind, see later
• --gpu-bind=closest is broken on LUMI
• Other options: See the manual

• Other <type> options for fully manual distribution
• --gpu-bind=map_cpu:<gpu_id_for_task_0>,<gpu_id_for_task_1>,... : Specify a 

single GPU for each task on the node
• --gpu-bind=mask_cpu:<mask_for_task_0>,<mask_for_task_1>,... : Specify 

multiple GPUs via a mask (but only 2 hexadecimal digits as there are only 8 GPUs per node)



MPI rank redistribution with Cray MPICH (1)

• Default behaviour: MPI rank i on task i

• Cray MPICH has its own mechanism to reorder MPI ranks on Slurm tasks that is more 
powerful than Slurm’s
• Best to use block distribution in Slurm for this.

• export MPICH_RANK_REORDER_METHOD=0 : Round-robin (like Slurm cyclic ordering)

• export MPICH_RANK_REORDER_METHOD=1 : Default, preserve the ordering from Slurm

• export MPICH_RANK_REORDER_METHOD=2 : Folded rank placement: First assign ranks on 
first task slot of each node from 0 till …, then assign a rank on the second task slot but now 
from … till 0, and so on.

• export MPICH_RANK_REORDER_METHOD=3 : Custom ordering set by the file 
MPICH_RANK_ORDER (or $MPICH_RANK_REORDER_FILE)

• The CPE has profiling tools that help you determine the optimal rank ordering

• See the 4/5-day Advanced LUMI course for more details



MPI rank redistribution with Cray MPICH (2)

• Assume 12 quarter node tasks and 3 nodes, starting from a Slurm block ordering

• export MPICH_RANK_REORDER_METHOD=0 (Cyclic)

• export MPICH_RANK_REORDER_METHOD=1 (Preserve Slurm)

• export MPICH_RANK_REORDER_METHOD=2 (Folded)

node 1 node 2 node 3

0 3 6 9 1 4 7 10 2 5 8 11

node 1 node 2 node 3

0 1 2 3 4 5 6 7 8 9 10 11

node 1 node 2 node 3

0 5 6 11 1 4 7 10 2 3 8 9



• The environment variable MPICH_OFI_NIC_POLICY can be used to map processes 
on Network Interface Controllers (NICs).

• Useful on LUMI-G as each node has 4 NICs

• Some values, first 2 are most relevant on LUMI:
• MPICH_OFI_NIC_POLICY=GPU: Use the NIC closest to the GPU.

• Should be used if MPI operations mostly access GPU-attached memory regions

• MPICH_OFI_NIC_POLICY=NUMA: Use  the NIC closest to the CPU cores of the MPI rank

• Should be used if MPI communications are done from CPU buffers

• MPICH_OFI_NIC_POLICY=BLOCK: Consecutive local ranks equally distributed among NICs. 
Default value

• MPICH_OFI_NIC_POLICY=ROUND-ROBIN: With 4 NICs: rank 0, 4, 8, … to NIC 0, rank 1, 5, 9, 
… to NIC 1, etc.

• User mapping possible in combination with MPICH_OFI_NIC_MAPPING.

MPI network adapter binding with Cray MPICH



Refining core binding in OpenMP

• Slurm will assign cores up to the task/process level
• Special case: Batch job step: All hardware threads of all cores of the first node of the job

• Thread-level control in OpenMP through library functions or environment variables
• Debug: export OMP_DISPLAY_AFFINITY=true

• export OMP_NUM_THREADS=<num> : Set number of threads

• Multiple comma-separated numbers possible for multi-level parallelism

• OMP_PLACES to define the places to use for binding: hardware thread level, core level or 
socket level, or an explicit list

• OMP_PROC_BIND to set distribution and binding strategy over places

• Single level parallelism: Experiment with omp_check and hybrid_check in 
lumi-CPEtools



Refining core binding in OpenMP: 
OMP_PLACES

• Defines the places to use for binding
• OMP_PLACES=threads : OpenMP threads restricted to a single hardware thread (default)

• OMP_PLACES=cores : OpenMP threads restricted to both hardware threads of a core

• OMP_PLACES=socket : OpenMP threads restricted to all hardware threads of a single socket

• Or define a set of locations (very technical)
export OMP_PLACES="{0,1,2,3},{8,9,10,11},{16,17,18,19}”
export OMP_PLACES="{0:4}:3:8”

• Core numbers here are relative to those available to the process and not physical numbers



Refining core binding in OpenMP: 
OMP_PROC_BIND

• Distribution over the places and binding selection:
• OMP_PROC_BIND=false : Turn off OpenMP thread binding, use the task affinity mask

• OMP_PROC_BIND=close : Try to keep the OpenMP threads as close as possible with one in 
each place (unless oversubscribed)

• OMP_PROC_BIND=spread : Try to spread the OpenMP threads out as much as possible

• OMP_PROC_BIND=master : Keep threads in the same place as the master thread.

• Mostly useful if the place is a socket

• Multiple comma-separated options possible for nested parallelism

• Non-standard option in CCE: auto which is the default (other compilers: false)
• CCE does a very reasonable job in many cases

• Many implementations have additional environment variables to tune the distribution



GPU binding with ROCR_VISIBLE_DEVICES

• Works at a very low level of the ROCm software stack

• Limits visibility to certain GPUs for all applications using the ROCm runtime
• So also covers HIP and OpenCL

• Value: Comma-separated list of all device indices exposed to the application
• Uses the local numbering in the control group

• Differences with affinity masks for CPUs
• Affinity masks are OS-controled

• Therefore the OS can ensure you can only make masks more restrictive than the parent

• Affinity masks always use the global numbering of hardware threads while 
ROCR_VISIBLE_DEVICES uses the local numbering in the control group



GPU binding: Optimal mapping (1)

CCD Available HWTs GCD

0 1-7, 65-71 4

1 9-15, 73-79 5

2 17-23, 81-87 2

3 25-32, 89-95 3

4 33-39, 97-103 6

5 41-47, 105-111 7

6 49-55, 113-119 0

7 57-63, 121-127 1



GPU binding: Optimal mapping (2)

GCD CCD Available HWTs

0 6 49-55, 113-119

1 7 57-63, 121-127

2 2 17-23, 81-87

3 3 25-32, 89-95

4 0 1-7, 65-71

5 1 9-15, 73-79

6 4 33-39, 97-103

7 5 41-47, 105-111



GPU binding: Embedded rings

• Green ring: 0 – 1 – 3 – 2 – 4 – 5 – 7 – 6 – 0 

• Red ring: 0 – 1 – 5 – 4 – 6 – 7 – 3 – 2 – 0



GPU binding: Implementation

• Combination of three mechanisms:

• CPU side: Use --cpu-bind, or in some cases simply --cpus-per-task

• GPU side: Manual binding required by setting ROCR_VISIBLE_DEVICES because 
Slurm uses a mechanism with unwanted side effects.
• Use a wrapper script that computes the proper GPU(s) from the Slurm local task id, sets 
ROCR_VISIBLE_DEVICES and then starts the application

• NIC side: Ensure the use of the closest NIC for each task/rank by setting 
MPICH_OFI_NIC_POLICY



GPU binding: Linear GCD, match cores (1)

…
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8 
…
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
export ROCR_VISIBLE_DEVICES=\$SLURM_LOCALID
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
CPU_BIND1="map_cpu:49,57,17,25,1,9,33,41"

srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND1 \
./select_gpu_$SLURM_JOB_ID gpu_check -l



GPU binding: Linear GCD, match cores (2)

…
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8 
…
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
export ROCR_VISIBLE_DEVICES=\$SLURM_LOCALID
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
CPU_BIND2="mask_cpu:0xfe000000000000,0xfe00000000000000"
CPU_BIND2="$CPU_BIND2,0xfe0000,0xfe000000"
CPU_BIND2="$CPU_BIND2,0xfe,0xfe00"
CPU_BIND2="$CPU_BIND2,0xfe00000000,0xfe0000000000"
srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND2 \

./select_gpu_$SLURM_JOB_ID gpu_check -l



GPU binding: Linear CCD, match GCD (1)

…
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8 
…
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
GPU_ORDER=(4 5 2 3 6 7 0 1)
export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
CPU_BIND1="map_cpu:1,9,17,25,33,41,49,57"

srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND1 \
./select_gpu_$SLURM_JOB_ID gpu_check -l



GPU binding: Linear CCD, match GCD (2)

…
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8 
…
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
GPU_ORDER=(4 5 2 3 6 7 0 1)
export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
CPU_BIND2="mask_cpu"
CPU_BIND2="$CPU_BIND2:0x00000000000000fe,0x000000000000fe00"
CPU_BIND2="$CPU_BIND2,0x0000000000fe0000,0x00000000fe000000"
CPU_BIND2="$CPU_BIND2,0x000000fe00000000,0x0000fe0000000000"
CPU_BIND2="$CPU_BIND2,0x00fe000000000000,0xfe00000000000000"
srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND2 \

./select_gpu_$SLURM_JOB_ID gpu_check -l



GPU binding: Linear CCD, match GCD (3)

…
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8 
…
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
GPU_ORDER=(4 5 2 3 6 7 0 1)
export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
srun --ntasks=$((SLURM_NNODES*8)) --cpus-per-task=7 \

./select_gpu_$SLURM_JOB_ID gpu_check -l

…
export OMP_NUM_THREADS=6
srun --ntasks=$((SLURM_NNODES*8)) --cpus-per-task=7 \

./select_gpu_$SLURM_JOB_ID gpu_check -l



GPU binding: Green ring (1)

Task GCD CCD HWTs

0 0 6 49-55, 113-119

1 1 7 57-63, 121-127

2 3 3 25-32, 89-95

3 2 2 17-23, 81-87

4 4 0 1-7, 65-71

5 5 1 9-15, 73-79

6 7 5 41-47, 105-111

7 6 4 33-39, 97-103



GPU binding: Green ring (2)

…
#SBATCH --partition=standard-g
#SBATCH --gpus-per-node=8 
…
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
GPU_ORDER=(0 1 3 2 4 5 7 6)
export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
CPU_BIND1="map_cpu:49,57,25,17,1,9,41,33"

srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND1 \
./select_gpu_$SLURM_JOB_ID gpu_check -l



GPU binding: Green ring (3)
cat << EOF > select_gpu_$SLURM_JOB_ID
#!/bin/bash
GPU_ORDER=(0 1 3 2 4 5 7 6)
export ROCR_VISIBLE_DEVICES=\${GPU_ORDER[\$SLURM_LOCALID]}
exec \$*
EOF
chmod +x select_gpu_$SLURM_JOB_ID
…
CCD_MASK=( 0x00000000000000fe \

0x000000000000fe00 \
0x0000000000fe0000 \
0x00000000fe000000 \
0x000000fe00000000 \
0x0000fe0000000000 \
0x00fe000000000000 \
0xfe00000000000000 )

CPU_BIND2="mask_cpu"
CPU_BIND2="$CPU_BIND2:${CCD_MASK[6]},${CCD_MASK[7]}"
CPU_BIND2="$CPU_BIND2,${CCD_MASK[3]},${CCD_MASK[2]}"
CPU_BIND2="$CPU_BIND2,${CCD_MASK[0]},${CCD_MASK[1]}"
CPU_BIND2="$CPU_BIND2,${CCD_MASK[5]},${CCD_MASK[4]}"
srun --ntasks=$((SLURM_NNODES*8)) --cpu-bind=$CPU_BIND2 \

./select_gpu_$SLURM_JOB_ID gpu_check -l



“Allocate by resources” partitions

• Proper binding not possible unless exclusively allocating entire nodes only

• Slurm will use a control group per task for the GPUs
• You almost have to use --gpus-per-task to ensure that GPUs and tasks are on the 

same nodes (unless you use just a single node)

• Problems with Peer2Peer IPC

• Solution:

• Turn off with --gpu-bind=none

• This will number visible GPUs for the job on each node from 0,

• and we can then again use the local task ID to assign a GPU to each task via 
ROCR_VISIBLE_DEVICES via the select_gpu script trick.

• Optimal mapping is not possible, but a proper setting of 
MPICH_OFI_NIC_POLICY may still make sense.



Questions?
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