
LUMI Software Stacks
Kurt Lust

LUMI User Support Team (LUST)
VSC Tier-0 support, University of Antwerp

October 2025

Software stack design considerations

• Very leading edge and inhomogeneous machine (new interconnect, new GPU architecture with
a still maturing software ecosystem, NVIDIA GPUs for visualisation, a mix of zen2 and zen3)

• Need to remain agile

• Users that come to LUMI from 12 different channels (not counting subchannels), with different
expectations

• Small central support team considering the expected number of projects and users and the
tasks the support team has

• But contributions from local support teams

• Cray Programming Environment is a key part of our system

• Users really want more and more a customised environment

• Everybody wants a central stack as long as their software is in there but not much more

• Look at the success of conda, Python virtual environments, containers, …

The LUMI solution

• Software organised in extensible software stacks based on a particular release of the PE

• Many base libraries and some packages already pre-installed

• Easy way to install additional packages in project space

• Modules managed by Lmod

• More powerful than the (old) Modules Environment

• Powerful features to search for modules

• EasyBuild is our primary tool for software installations

• But uses HPE Cray specific toolchains

• Offer a library of installation recipes

• User installations integrate seamlessly with the central stack

• We do have a Spack setup but don’t do development in Spack ourselves

Policies

• Bring-your-own-license except for a selection of tools that are useful to a larger

community

• One downside of the distributed user management is that we do not even have the

information needed to determine if a particular userid can use a particular software license

• Even for software on the system, users remain responsible for checking the license!

• LUST tries to help with installations of recent software, but porting or bug fixing is

not our work

• Not all Linux or even supercomputer software will work on LUMI

• We’re too small a team to do all software installations, so don’t count on us to do all the

work

• Conda, (large) Python installations need to go in containers

• Tools: lumi-container-wrapper , cotainr and SingularityCE unprivileged proot build

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/l/lumi-container-wrapper/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/l/lumi-container-wrapper/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/l/lumi-container-wrapper/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/l/lumi-container-wrapper/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/l/lumi-container-wrapper/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/c/cotainr/
https://docs.sylabs.io/guides/4.1/user-guide/build_a_container.html#unprivilged-proot-builds
https://docs.sylabs.io/guides/4.1/user-guide/build_a_container.html#unprivilged-proot-builds

Organisation: Software stacks

• CrayEnv: Cray environment with some additional tools pushed in through EasyBuild

• LUMI stacks, each one corresponding to a particular release of the PE

• Work with the Cray PE modules, but accessed through a replacement for the PrgEnv-*
modules

• Tuned versions for the 4 types of hardware: zen2 (login, large memory nodes), zen3 (LUMI-
C compute nodes), zen2 + NVIDIA GPU (visualisation partition), zen3 + MI250X (LUMI-G
GPU partition)

• spack: Install software with Spack using compilers from the PE

• Offered as-is for users who know Spack, but we do not do development in Spack

• Some local organisations also provide software pre-installed on LUMI

• Look for Local-* modules

• EESSI may be coming next year if they can get it to work on LUMI as part of the
EuroHPC federation platform, and initially likely CPU-only

Accessing the Cray PE on LUMI
3 different ways

• Very bare environment available directly after login

• What you can expect on a typical Cray system

• Few tools as only the base OS image is available

• User fully responsible for managing the target modules

• CrayEnv

• “Enriched” Cray PE environment

• Takes care of managing the target modules: (re)loading CrayEnv will reload an
optimal set for the node you’re on

• Some additional tools, e.g., newer build tools (offered here and not in the bare
environment as we need to avoid conflicts with other software stacks)

• Otherwise used in the way discussed in this course

Accessing the Cray PE on LUMI
3 different ways

• LUMI software stack

• Each stack based on a particular release of the HPE Cray PE

• Other modules are accessible but hidden from the default view

• Better not to use the PrgEnv modules but the EasyBuild LUMI toolchains

• Environment in which we install most software (mostly with EasyBuild)

HPE Cray PE LUMI toolchain

PrgEnv-cray cpeCray Cray Compiling Environment

PrgEnv-gnu cpeGNU GNU C/C++ and Fortran

PrgEnv-aocc cpeAOCC AMD CPU compilers (not on LUMI-G)

PrgEnv-amd cpeAMD AMD ROCm GPU compilers (LUMI-G only)

Accessing the Cray PE on LUMI
The LUMI software stack

• The LUMI software stack uses two levels of modules
• LUMI/24.03, LUMI/23.12, LUMI/23.09, LUMI/23.03, LUMI/22.08 (and more in the

ccpe containers): Versions of the LUMI stack

• partition/L, partition/C, partition/G, partition/D: To select software optimised for
the respective LUMI partition

• partition/L is for both the login nodes and the large memory nodes (4TB)

• Hidden partition/common for software that is available everywhere, but be careful
using it for your own installs

• When (re)loaded, the LUMI module will load the best matching partition module.

• So be careful in job scripts: When your job starts, the environment will be that of
the login nodes, but if you reload the LUMI module it will be that of the compute
node!

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/c/ccpe/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/c/ccpe/

Installing software on HPC systems

• Software on an HPC system is rarely installed from RPM

• Generic RPMs often not optimised for the specific CPU

• Generic RPMs may not work with the specific LUMI environment (Slingshot
interconnect, kernel modules, resource manager)

• Multi-user system so usually no “one version fits all”

• Need a small system image as nodes are diskless

• Spack and EasyBuild are the two most popular HPC-specific software build
and installation frameworks

• Usually install from sources to adapt the software to the underlying hardware and OS

• Installation instructions in a way that can be communicated and executed easily

• Make software available via modules

• Dependency handling compatible with modules

Extending the LUMI stack with EasyBuild

• Fully integrated in the LUMI software stack

• Load the LUMI module and modules should appear in your module view

• EasyBuild-user module to install packages in your user space

• Will use existing modules for dependencies if those are already on the system or

in your personal/project stack

• EasyBuild built-in easyconfigs do not work well on LUMI, not even on LUMI-C

• GNU-based toolchains: Would give problems with MPI (Open MPI)

• Intel-based toolchains: Intel tools and AMD CPUs are a problematic cocktail

• Library of recipes that we made in the LUMI-EasyBuild-contrib GitHub repository

• EasyBuild-user will find a copy on the system or in your installation

• List of recipes in the LUMI Software Library

https://github.com/Lumi-supercomputer/LUMI-EasyBuild-contrib/tree/main/easybuild/easyconfigs
https://github.com/Lumi-supercomputer/LUMI-EasyBuild-contrib/tree/main/easybuild/easyconfigs
https://github.com/Lumi-supercomputer/LUMI-EasyBuild-contrib/tree/main/easybuild/easyconfigs
https://github.com/Lumi-supercomputer/LUMI-EasyBuild-contrib/tree/main/easybuild/easyconfigs
https://github.com/Lumi-supercomputer/LUMI-EasyBuild-contrib/tree/main/easybuild/easyconfigs
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

EasyBuild recipes - easyconfigs

• Build recipe for an individual package = module
• Relies on either a generic or a specific installation process provided by an

easyblock

• Steps
• Downloading and unpacking sources and applying patches

• Typical configure – build – (test) – install process

• Extensions mechanism for perl/python/R packages

• Some simple checks

• Creation of the module

• All have several parameters in the easyconfig file

The toolchain concept

• A set of compiler, MPI implementation and basic math libraries
• Simplified concept on LUMI as there is no hierarchy as on some other

EasyBuild systems

• These are the cpeCray, cpeGNU, cpeAOCC and cpeAMD modules
mentioned before!

HPE Cray PE LUMI toolchain

PrgEnv-cray cpeCray Cray Compiling Environment

PrgEnv-gnu cpeGNU GNU C/C++ and Fortran

PrgEnv-aocc cpeAOCC AMD CPU compilers (not on LUMI-G)

PrgEnv-amd cpeAMD AMD ROCm GPU compilers (LUMI-G only)

The toolchain concept (2)

• Special toolchain: SYSTEM to use the system compiler
• Does not fully function in the same way as the other toolchains when it

comes to dependency handling

• Used on LUMI for CrayEnv and some packages with few dependencies

• It is not possible to load packages from different cpe toolchains at the
same time
• EasyBuild restriction, because mixing libraries compiled with different

compilers does not always work

• Packages compiled with one cpe toolchain can be loaded together with
packages compiled with the SYSTEM toolchain
• But we do avoid mixing them when linking

easyconfig names and module names

GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb

Name of the package

Version of the package

Toolchain name and version (missing for SYSTEM)

Additional information

Module: GROMACS/2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU

Installing
Step 1: Where to install

• Default location is $HOME/EasyBuild

• But better is to install in your project directory for the whole project

• export EBU_USER_PREFIX=/project/project_465000000/EasyBuild

• Set this before loading the LUMI module

• All users of the software tree have to set this environment variable to use the

software tree

Installing
Step 2: Configure the environment

• Load the modules for the LUMI software stack and partition that you

want to use. E.g.,

module load LUMI/24.03 partition/C

• Load the EasyBuild-user module to make EasyBuild available and to

configure it for installing software in the chosen stack and partition:

module load EasyBuild-user

• In many cases, cross-compilation is possible by loading a different

partition module than the one auto-loaded by LUMI

• Though cross-compilation is sometimes problematic for GPU code

module load LUMI/24.03 partition/C
module load EasyBuild-user

Installing
Step 3: Install the software

• Let’s, e.g., install GROMACS

• Search if GROMACS build recipes are available:

• Search the LUMI Software Library that lists all available software through EasyBuild.

• Or on the command line:

eb --search GROMACS

eb –S GROMACS

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

LUMI Software Library

eb --search GROMACS | less

eb -S GROMACS | less

Installing
Step 3: Install the software

• Let’s, e.g., install GROMACS

• Search if GROMACS build recipes are available:

• Search the LUMI Software Library that lists all available software through EasyBuild.

• Or on the command line:

eb --search GROMACS

eb –S GROMACS

• Let’s take GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb:

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D (2)

Installing
Step 3: Install the software

• Let’s, e.g., install GROMACS

• Search if GROMACS build recipes are available:

• Search the LUMI Software Library that lists all available software through EasyBuild.

• Or on the command line:

eb --search GROMACS

eb –S GROMACS

• Let’s take GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb:

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r

First a dependency

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r (2)

Now GROMACS

Multiple configurations

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r(3)

Second configuration

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb –r (4)

Third configuration

Fourth configuration

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r (5)

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r (6)

Installing
Step 3: Install the software

• Let’s, e.g., install GROMACS

• Search if GROMACS build recipes are available:

• Search the LUMI Software Library that lists all available software through EasyBuild.

• Or on the command line:

eb --search GROMACS

eb –S GROMACS

• Let’s take GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb:

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D

eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r

• Now the module should be available

module avail GROMACS

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

Installing
Step 3: Install the software - Note

• Installing this way is 99% equivalent to an installation in the central software

tree. The application is compiled in exactly the same way as we would do and is

served from Lustre in both cases.

• But you are in control of updates.

• Note: EasyBuild clears the Lmod user cache so in principle newly installed

modules should show up without problems after installation.

• We’ve seen rare cases where internal Lmod data structures were corrupt and

logging out and in again was needed.

• To manually remove the cache: Remove $HOME/.cache/lmod

rm -rf $HOME/.cache/lmod

More advanced work

• You can also install some EasyBuild recipes that you got from support
and are in the current directory (preferably one without subdirectories):
eb my_recipe.eb -r .

• Note the dot after the –r to tell EasyBuild to also look for dependencies in
the current directory (and its subdirectories)

• In some cases you will have to download the sources by hand, e.g., for
VASP, which is then at the same time a way for us to ensure that you
have a license for VASP. E.g.,

• eb --search VASP

• Then from the directory with the VASP sources:
eb VASP-6.5.0-cpeGNU-24.03-build02.eb -r .

More advanced work (2):
Repositories

• It is possible to have your own clone of the LUMI-EasyBuild-contrib repo in your
$EBU_USER_PREFIX subdirectory if you want the latest and greatest before it is
in the centrally maintained repository
• cd $EBU_USER_PREFIX
git clone https://github.com/Lumi-supercomputer/LUMI-EasyBuild-
contrib.git

• It is also possible to maintain your own repo

• The directory should be $EBU_USER_PREFIX/UserRepo (but of course on
GitHub the repository can have a different name)

• Structure should be compatible with EasyBuild: easyconfig files go in
$EBU_USER_PREFIX/UserRepo/easybuild/easyconfigs

More advanced work (3): Reproducibility

• EasyBuild will keep a copy of the sources in $EBU_USER_PREFIX/sources

• EasyBuild also keeps copies of all installed easyconfig files in two locations:

• In $EBU_USER_PREFIX/ebfiles_repo

• And note that EasyBuild will use this version if you try to reinstall and did

not delete this version first!

• This ensures that the information that EasyBuild has about the installed

application is compatible with what’s in the module files

• With the installed software (in $EBU_USER_PREFIX/SW) in a subdirectory

called easybuild

This is meant to have all information about how EasyBuild installed the

application and to help in reproducing

EasyBuild tips&tricks

• Updating version: Often some trivial changes in the EasyConfig (.eb) file
• Checksums may be annoying: Use --ignore-checksums with the eb

command

• Updating to a new toolchain:
• Be careful, it is more than changing one number

• Versions of preinstalled dependencies should be changed and EasyConfig files of
other dependencies also checked

• LUMI Software Library at lumi-supercomputer.github.io/LUMI-EasyBuild-
docs
• For most packages, pointers to the license

• User documentation gives info about the use of the package, or restrictions

• Technical documentation aimed at users who want more information about how
we build the package

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

EasyBuild training for advanced users and
developers

• EasyBuild web site: easybuild.io

• Generic EasyBuild training materials on tutorial.easybuild.io.

• Training for CSC and local support organisations: Most up-to-date
version of the training materials on
lumi-supercomputer.github.io/easybuild-tutorial.

• Possibly a new training for LUMI users in 2026

https://easybuild.io/
https://tutorial.easybuild.io/
https://lumi-supercomputer.github.io/easybuild-tutorial/
https://lumi-supercomputer.github.io/easybuild-tutorial/
https://lumi-supercomputer.github.io/easybuild-tutorial/
https://lumi-supercomputer.github.io/easybuild-tutorial/
https://lumi-supercomputer.github.io/easybuild-tutorial/

Questions?

	Slide 1: LUMI Software Stacks
	Slide 2: Software stack design considerations
	Slide 3: The LUMI solution
	Slide 4: Policies
	Slide 5: Organisation: Software stacks
	Slide 6: Accessing the Cray PE on LUMI 3 different ways
	Slide 7: Accessing the Cray PE on LUMI 3 different ways
	Slide 8: Accessing the Cray PE on LUMI The LUMI software stack
	Slide 9: Installing software on HPC systems
	Slide 10: Extending the LUMI stack with EasyBuild
	Slide 11: EasyBuild recipes - easyconfigs
	Slide 12: The toolchain concept
	Slide 13: The toolchain concept (2)
	Slide 14: easyconfig names and module names
	Slide 15: Installing Step 1: Where to install
	Slide 16: Installing Step 2: Configure the environment
	Slide 17: module load LUMI/24.03 partition/C module load EasyBuild-user
	Slide 18: Installing Step 3: Install the software
	Slide 19: LUMI Software Library
	Slide 20: eb --search GROMACS | less
	Slide 21: eb -S GROMACS | less
	Slide 22: Installing Step 3: Install the software
	Slide 23: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D
	Slide 24: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -D (2)
	Slide 25: Installing Step 3: Install the software
	Slide 26: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r
	Slide 27: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r (2)
	Slide 28: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r(3)
	Slide 29: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb –r (4)
	Slide 30: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r (5)
	Slide 31: eb GROMACS-2024.3-cpeGNU-24.03-PLUMED-2.9.3-noPython-CPU.eb -r (6)
	Slide 32: Installing Step 3: Install the software
	Slide 33: Installing Step 3: Install the software - Note
	Slide 34: More advanced work
	Slide 35: More advanced work (2): Repositories
	Slide 36: More advanced work (3): Reproducibility
	Slide 37: EasyBuild tips&tricks
	Slide 38: EasyBuild training for advanced users and developers
	Slide 39: Questions?

