

October 2025 Slides originally authored by Kurt Lust (LUST, UAntwerp)

Why do I need to know this?

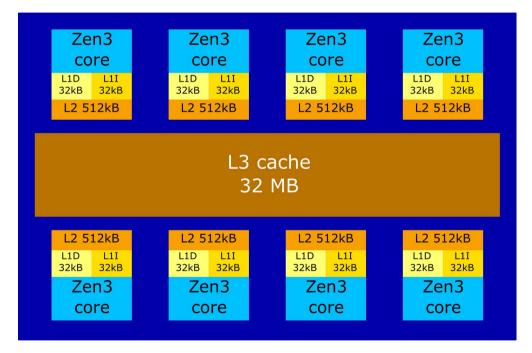
Q: "I only want to run, why do I need to know about system architecture?"

A: An HPC system is not a big smartphone or big PC

- Built for large parallel jobs
 - Scaling is not for free
 - · Not in Hardware, neither in Software!
- Often those application needs to be mapped on the hardware to run efficiently.
- · Which requires an understanding of
 - The hardware: This section
 - The middleware between the application and the hardware: Several sessions during this course
 - The application: Very domain-specific and hence not the topic of a general course
 - The specific problem you're trying to solve
- 20% unused performance = several millions of EUROs

LUMI is...

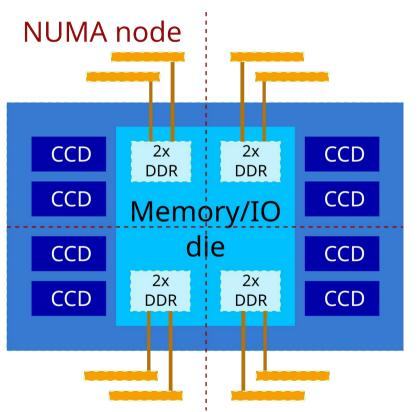
... a (pre-)exascale supercomputer ...


- ... and not a superfast PC ...
- ... and not a compute cloud infrastructure.
- Each of these infrastructures have their own trade-offs
- A supercomputer is:
 - Build for scalable parallel applications in the first place
 - A shared infrastructure with lightweight management
 - Principle: Reduce hardware costs by clever software
 - Build for streaming data through the machine at all levels, not for random access to small bits of data

LUMI spec sheet: A modular system

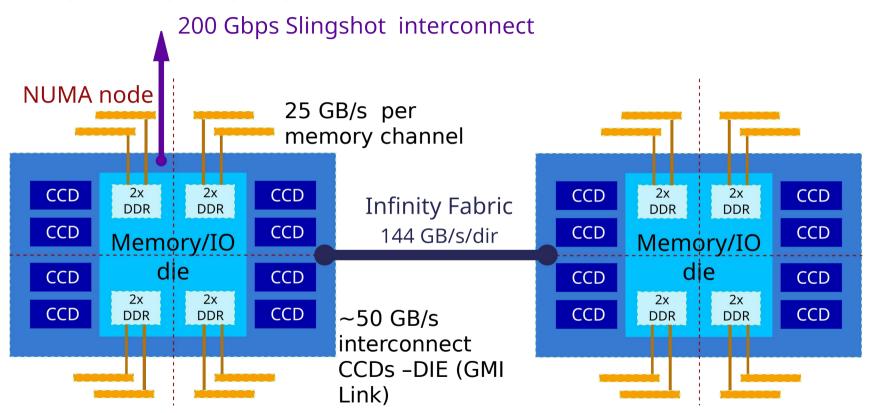
- **LUMI-G**: 2978 nodes with 1 AMD EPYC 7A53 CPU and 4 AMD MI250x accelerators (512 GB + 4x128 GB RAM)
- **LUMI-C**: 2048 nodes with 2 64-core AMD EPYC 7763 CPUs (1888x 256GB, 128x 512 GB and 32x 1TB)
- LUMI-D: 8 4TB CPU nodes and 8 nodes with 8 A40 GPUs each for visualization
- **LUMI-F**: 8 PB Lustre flash-based file storage (>2 TB/s)
- **LUMI-P**: 4 20 PB hard disk based Lustre file systems (4x 240 GB/s)
- LUMI-O: 30 PB object based file system
- **LUMI-L**: 4 user access nodes with two AMD Rome CPUs each for ssh access and some for web access via Open OnDemand
- All linked together with a HPE Cray Slingshot 11 interconnect

The AMD EPYC 7xx3 (Milan/Zen3) CPU



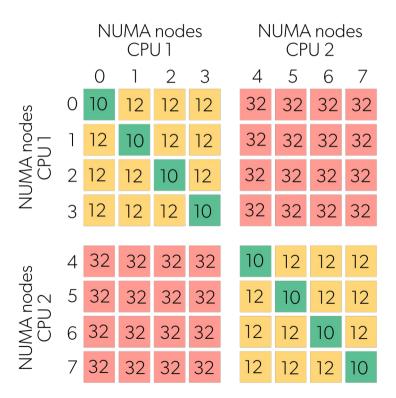
- Building block: a Core Complex Die (CCD)
- 8 cores
 - Each core has private L1 and L2 caches
 - L3 cache shared
- Instruction set equivalent to Intel Broadwell generation and Rome/Zen2
 - AVX2+FMA, no AVX-512
- Rome/Zen2 has 2 4-core core complexes per die.
 - Milan architecture simpler

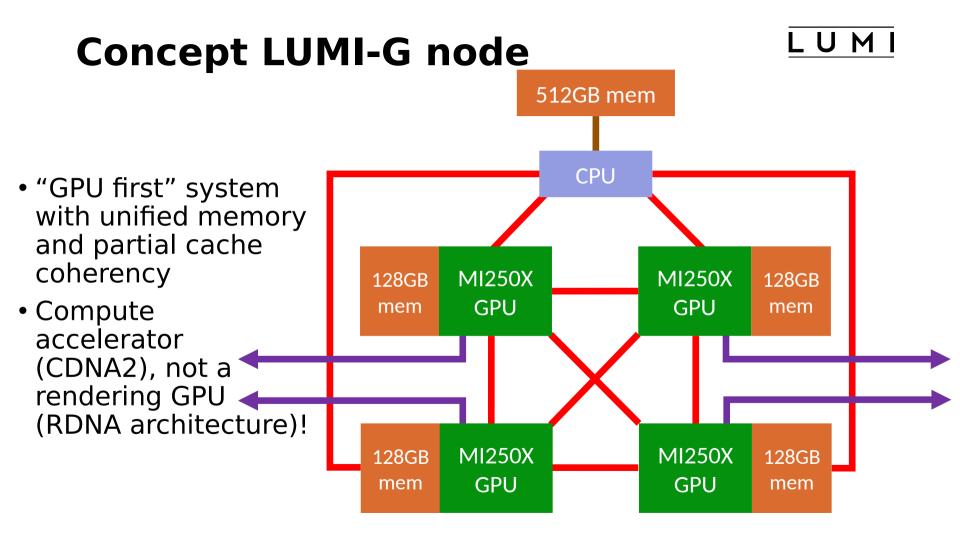
The AMD EPYC 7xx3 (Milan/Zen3) CPU



- 8 CCDs or 8 L3 cache regions
- Memory/IO die logically split into 4 NUMA domains with
 - 2 CCDs (16 cores)
 - 2 DDR4 controllers
- Memory/IO die also provides the PCIe links and intersocket links
- Comparision with Rome/zen2:
 - Rome/zen2 has 16 L3 cache regions with 4 cores each (in the 64-core variant)

LUMI-C node

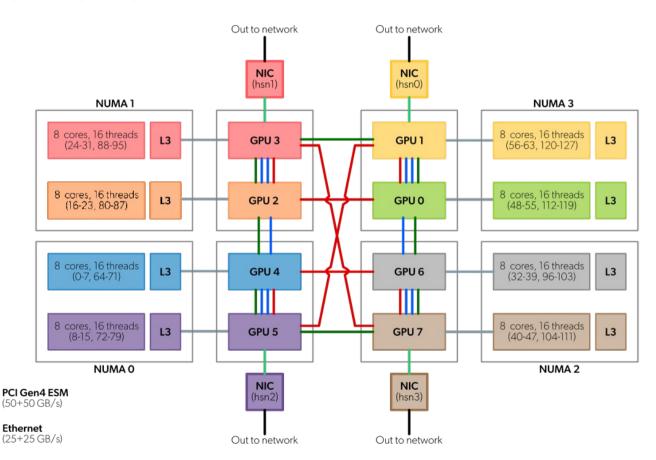

Strong hierarchy


hierarchy layer		per	sharing	distance	data transfer delay	data transfer bandwidth
1	2 threads	core	L1I, L1D, L2, exection units, rename registers	_		
2	8 cores	CCD	L3 Link to I/O die			
3	2 CCDs	NUMA node	DRAM channels (and PCIe lanes)			
4	4 NUMA nodes	socket	inter-socket link			
5	2 sockets	node	inter-node link			

Delays in numbers

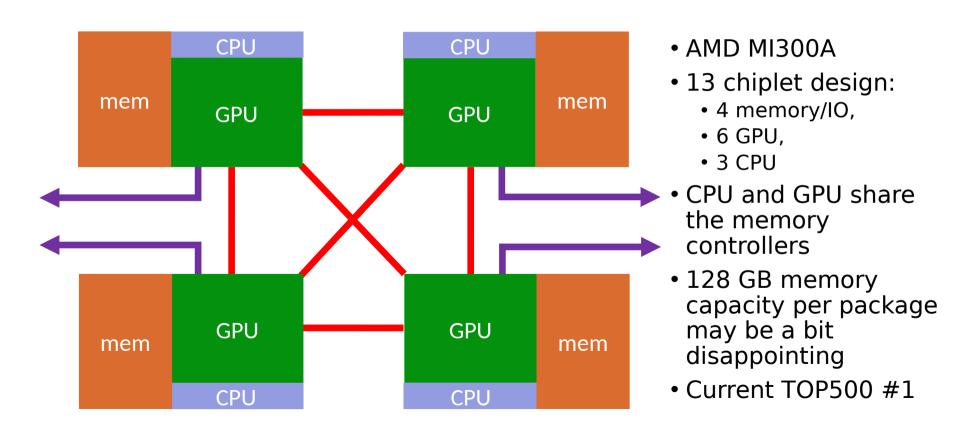
- NUMA behaviour not that pronounced within a socket
- but definitely something to take into account between sockets

Real LUMI-G node


- MI250X is built with 2 chiplets
- Chiplet memory has 64GB each, 1.6TB/s Bandwidth
- Bandwidth between chiplets is only 200GB/s

Infinity Fabric GPU-GPU

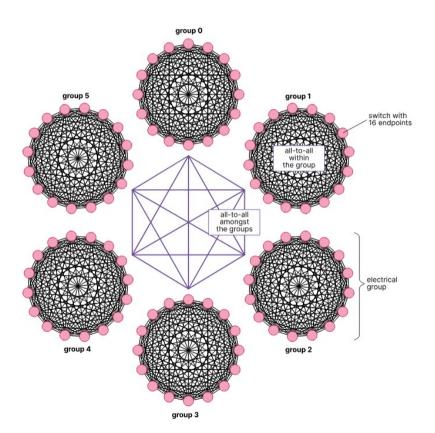
Infinity Fabric CPU-GPU


(50+50 GB/s)

(36+36 GB/s)

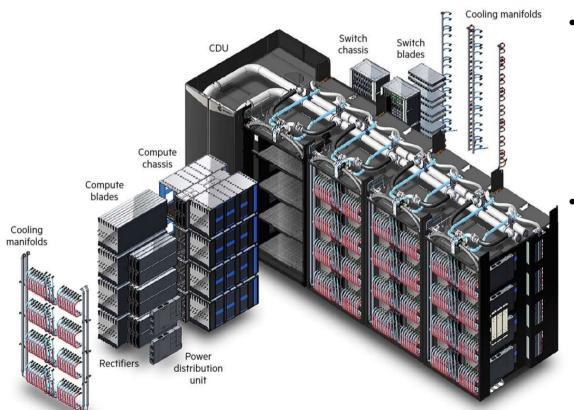
The next gen: El Capitan

Slingshot interconnect



- 200 Gb/s (25 GB/s/dir) interconnect based on Ethernet but with proprietary extensions for better HPC performance
 - Adapts to Ethernet devices in the network
 - Lot of attention to adaptive routing and congestion control
 - MPI acceleration
- Not your typical Mellanox/NVIDIA software stack with ucx but libfabric...

Slingshot interconnect



- Dragonfly topology
 - 16 switch ports connect to nodes, 48 to other switches
 - 16 or 32 switches in a group with all-to-all connection between the switches in a group
 - Groups are then also connected in an all-to-all way
 - Possible to build large networks where nodes are only 3 hops between switches away on an uncongested network

HPE Cray EX system

LUMI-C

- 1 network port/node
- 4 nodes/compute blade
- 2 switch blades/chassis
- 4 nodes on a blade distributed over 2 switches!

LUMI-G

- 4 network ports/node
- 2 nodes/compute blade
- 4 switch blades/chassis
- 2 nodes on blade on other switch pair!

LUMI

