Kurt Lust

USing I.US'llre LUMI User Support Team (LUST)

University of Antwerp

May 2024




File systems on LUMI LUMI

* HPC since the second half of the 1980s has mostly been about trying to build a fast
system from relatively cheap hardware and cleverly written software.

* The Lustre parallel file system fits in that way of thinking:
* Link several reqular servers
 with a good network to the compute resources
* to build a single system with a lot of storage capacity and a lot of bandwidth
* (though unfortunately not all IOPS — number of I/O operations —scaled as nicely).

* And it is the main file system on large HPE Cray systems.
* HPE Cray EX systems go one step further:
* Lustre is the only network file system on the compute nodes,
* other external file systems come via DVS — Data Virtualisation Service
* as part of the measures taken to minimise OS jitter and reduce node memory use.



Lusire building blocks

Key element: Separation of data and metadata

Metadata servers (MDSes) with one or

Object storage servers (OSSes) with one

“rgets (OSTs)
Lustre clients that

High-performance
interconnect between
all pieces of the storage
system

LUMI

High-Performance Interconnect

Metadata
Server
(MDS)

§>/

l

Metadata
Target
(MDT)

@

Object
Storage
Server

(OSS)

*@

Object Storage
Target
(OST)

Object
Storage
Server

N

Object Storage
Target
(OST)



Lustre building blocks (2) LUMI

* Lustre separates data and metadata as both are used differently

* Metadata servers (MDSes) with one or more metadata targets (MDTs) each
store namespace metadata (filename, access permissions, ...) and file layout.

* Object storage servers (OSSes) with one or more object storage targets (OSTs)
each store the actual data.
* Capacity of Lustre is the sum of the capacity of the OSTs

* Lustre clients that access and use the data and makes the whole Lustre setup
look like a single large file system
* Transparent in functionality: You can use it as any regular Linux file system
* But not transparent in performance: How you use Lustre can have a huge impact on
performance

* All linked together through the high performance interconnect.



Striping: Large files spread across OSTs LY Ml
Files broken in chunks/stripes,

L . Lust
distributed cyclically across a CLf,SeLet File J

number of chunk files/objects, T T T U1
each on a separate OST

Transparent to the user with \/

respect to correctness

But large impact on ' '
performance i i . 2] st

2 parameters: 1 ' '
» Size of the stripes @ ‘@ . @é . @5*
* Number of OSTs

* Default on LUMI is to use only
one OST OSTO \ OS

across 4 objects



Accessing a file

Client queries MDS

MDS returns layout/location

Subsequent read or write calls

can talk directly to all OSSes
involved

m write(12,*) data

Clients

€

iiqh—Performance Interclm

J

Mgtadata
erver

DS)

—
Exon-nd

Metadata
Target
(MDT)

Object Storage
Target
(OST)

Objec
Storage
Server
(OSS)

Object Storage
Target
(OST)

Object
Storage
Server
(OSS)

Object Storage
Target
(©sT)



LUMI

Parallelism is key!

* MDS access can be problematic

» Difficult to spread across multiple MDSes
* Small accesses, so each MDS doesn't really exploit parallelism in RAID either

* But up to four levels of parallelism in reads and writes
* Engage multiple OSSes
* Which can each engage multiple OSTs
* That typically engage multiple disks in a RAID setup for reliability
* For an SSD file system: Modern SSDs are also highly parallel

* So large I/O operations needed
* Very small /O operations won't even benefit from RAID acceleration
* Relatively large stripe size for more efficient I/O at the OST level (especially for hard drives)

* And even larger I/O operations needed to engage enough OSTs (but that access can come
from multiple nodes in the process)



LUMI

Parallelism is key! (2)

» & HPC file formats such as HDF5 and netCDF

* When used properly, very good bandwidth possible
* Old codes can be very good. But their authors have known floppy drives...

» @ Codes that open one or more files per MPI rank
* Won't scale to large numbers of ranks
* Disaster for MDS as files will be opened more or less simultaneously

* Potential disaster for ODS also as each ODS will serve many files with writes or reads
coming in simultaneously

* Also in old codes that were never meant to scale to 1000s or cores
« @ @ Abuse the file system as an unstructured database by dumping data in thousands
or millions of small files with each one data element
* Local SSD not really a solution as you "own"” a node only shortly
* A Python or conda software installation by itself is already an example



LUMI

How to determine the striping value?

* Small files accessed sequentially: @ @ @
* Try to use all OSTs without overloading them.

* #files = #OSTs: stripe count 1 is best

* #files = 1: Set the stripe count to #0STs, or a smaller number if the performance
plateaus (benchmarking needed!). The latter will happen if not enough Lustre clients
are used simultaneously to access the file.

* #files < #0OSTs: Chose such that stripe count * #files = #0STs.
E.g.: 32 OSTs and 8 files: Use a stripe count of 4.

* Let the system choose the OSTs, don’t try to impose them.

* An ideal stripe size will usually be 1 MB or more.
Maximum value is 4 GB but that is only useful for very large files.



Managing the striping parameters (1)

LUMI

* The basic command line tool to manage striping in lustre is the 1fs command.

* Use 1fs df -htogetinformation about the file systems
Available Use% Mounted on

UUID bytes

lustref1-MDTOOOO UUID 11.8T
lustref1-MDTOOO1 UUID 11.8T
lustref1-MDTO002_ UUID 11.8T
lustref1-MDTOOO3 UUID 11.8T
lustref1-0STO00O UUID 121.3T
lustref1-0STO001 UUID 121.3T
lustref1-0STO002_ UUID 121.3T

* A way to find the number of OSTs

Used

16.
4.
2
2

21.

21.

21.

8G
1G

. 8G
.7G

7T
8T
7T

11.
11.
11.
11.
98.
98.
AT

98

6T
6T
7T
7T
3T
2T

1%
1%
1%
1%
19%
19%
19%

/pfs/lustrefl[MDT:
/pfs/lustrefl[MDT:
/pfs/lustrefl[MDT:
/pfs/lustrefl[MDT:
/pfs/lustrefl[OST:
/pfs/lustrefl[OST:
/pfs/lustrefl[OST:



Managing the striping parameters (2) LUMI

* Use 1fs getstripe to check striping information at the directory or file level
$ Lfs getstripe —d /appl/lumi/SW
stripe_count: 1g4stripe_size: 1048576 pattern: 0 stripe_offset: -1

$ 1 — : U lumi/sw f
3838 Only show directory itself @ pattern: 0 stripe goibteats
_ _ t Let the MDS chose
$ Ufs getstripe /8ppN./lumi/LUMIFSoftwareStack/etc/motd. tx
/appl/

Ty Actually the defaults for the file system

lmm_stripe_size: 1048576
Imm_pattern: raide@
Imm_layout_gen: 0
Ilmm_stripe_offset: 2

obdid objid objid group
2 'x\\ 53%319061 0x116c¢c6f55 0

OSTs for the file




Managing the striping parameters (3) LUMI

* Use 1fs setstripe to setthe striping information

$ module use /appl/local/training/modules/2day-20240502
% mﬁﬂg,{et(ﬁ‘;iﬂi,{“ml't"a”‘lng‘t""ls B Default striping for this directory
$ 1fs setstripe -S 2m -c 4 testdir <
$ cd testdir : : :
$ mkfile 2g testfilel <— Tool to create a new file of given size (2G here)
$ 1fs getstripe testfilel
testfilel
Imm_stripe_count: 4 el And we get the values that we set for the directory
Imm_stripe_size: 2097152
Imm_pattern: raide
Imm_layout_gen: %)
Imm_stripe_offset: 28
obdidx _~» objid objid group
28 66250987 Ox3f2e8eb %]
30 66282908 Ox313659cC %]
1 71789920 0x4476d60 %]
5 71781120 0x4474b00 %]
“

The 4 OSTs



Managing the striping parameters (4) LUMI

* Use 1fs setstripe to set the striping information

1fs setstripe -S 16m -c 2 testfile2
ﬁ 1s -1h . Al Create an empty file with given striping
total ©
-PW-rw---- 1 XXXXXXXX project_462000000 2.0G Jan 15 16:17 testfilel
-PW-rw---- 1 XXXXXXXX project_462000000 @ Jan 15 16:23 testfile2
$ 1fs getstripe testfile2
testfile2

Imm_stripe_count: 2
Imm_stripe_size: 16777216

Imm_pattern: raide
Imm_layout_gen: %)
Imm_stripe_offset: 10
obdidx objid objid group
10 71752411 ox446dadb %]

14 71812909 ox447c72d %)



The metadata servers (1) LUM I

* Finite and shared resource

* Involved in many file system operations:
* Create/open/close
* Get attributes
* Managing file locking
* Slow or variable filesystem performance when overstressed
* Less than 200k operations per second, depending on operation type also!



LUMI

The metadata servers (2)

* Important to be careful with what you do
E.g., 1s -1lisrather costly on Lustre

Access to many small files from many processes is not a good idea (think Python): Run from a
container or move to /tmp (which will eat from your RAM). Use file formats as HDF5, ADIOS, ...

The filesystem is not a communication device for shuffling data between nodes

Avoid very large directories
Use 1fs find instead of find
And many more tips for programmers...



Lustre on LUMI

* LUMI-P:
* 4 disk based storage systems
* 18 PB capacity each
* 240 GB/s aggregated bandwidth each
* 2 MDTs (1 per MDS), 32 OSTs (2 per OSS)
* Serves Jusers, [project and /scratch

* LUMI-F
* Solid State Drive based storage system
* 8.5 PB capacity
* >2 TB/s aggregated bandwidth
* 4 MDTs (1 per MDS) and 72 OSTs (2 per OSS)
* Serves [flash

LUMI




LUMI

Questions?



