
Containers on LUMI-C and LUMI-G Kurt Lust
LUMI User Support Team (LUST)

University of Antwerp

May 2024

Containers

This is about containers on LUMI-C and LUMI-G!

• What can they do and what can’t they do?
• Getting containers onto LUMI
• Running containers on LUMI
• Enhancements to the LUMI environment to help you
• Using some of our pre-built AI containers

• But remember: LUMI is an HPC infrastructure, not a container cloud!

What do containers not provide?

• Full reproducibility of results is a myth
• Full portability: Not every container prepared on your Ubuntu or CentOS

cluster or workstation will work on LUMI.
• Containers that rely on certain hardware, kernel modules and/or kernel versions

may fail.
• Problem cases: High-performance networking (MPI) and GPU (driver version)

• Performance portability:
• A container built from sources on one CPU will not be optimal for another one.
• Containers built from downloaded binaries may not exploit all architectural

features of the CPU.
• No support for the LUMI interconnect may lead to fall-down to slower protocol

that works

But what can they then do on LUMI?

• Storage manageability: Lower pressure on the filesystems (for software
frameworks that access hundreds of thousands of small files) for better I/O
performance and management of your disk file quota.
• E.g., conda installations are not appreciated straight on the Lustre file system

• Software installation: Can be a way to install software with an installation
process that is not aware of multi-user HPC systems and is too complicated to
recompile.
• E.g., GUI applications that need a fat library stack
• E.g., experiment with software that needs a newer version or ROCm, though with

limitations

• But note: You’re the system administrator of your container, not LUST!

Managing containers

• Supported runtimes
• Docker is NOT directly available in the user environment (and will never be)

• Singularity Community Edition is natively available (as a system command) on the
login and compute nodes

• But you can convert docker containers to singularity: Pulling containers
• DockerHub and other registries (example: Julia container)
singularity pull docker://julia

• Singularity uses a flat (single) sif file for storing the container and the pull command
makes the conversion

• Be carefull: cache in .singularity dir can easily exhaust your storage quota for
larger images

• May want to set SINGULARITY_CACHEDIR to move the cache

singularity pull docker://julia

singularity pull docker://julia

singularity pull docker://julia

Managing containers (2)

• Building containers

• Support for building containers is very limited on LUMI: no elevated privileges but
also no user namespaces.
We can support proot though.

• You should either pull or copy containers from outside

• Singularity can build from existing (base) container in some cases

• Build type called “Unprivileged proot builds” in the Singularity CE manual

• Needs proot from the systools/23.09 module in CrayEnv and LUMI/23.09.

• We provide some base images adapted for LUMI

Interacting with containers

• Accessing a container with the shell command
singularity shell container.sif
• Executing a command in the container with exec
singularity exec container.sif uname -a
• "Running" a container
singularity run container.sif
• Inspecting run definition script
singularity inspect --runscript container.sif
• Accessing host filesystem with bind mounts

• Singularity will mount $HOME, /tmp, /proc, /sys, /dev into container by default
• Use --bind src1:dest1,src2:dest2 or the SINGULARITY_BIND(PATH)

environment variable to mount other host directories (like /project or /appl)

singularity shell julia_latest.sif

singularity exec julia_latest.sif uname -a

singularity run julia_latest.sif
singularity inspect –runscript julia_latest.sif

Running containers on LUMI

• Use SLURM to run containers on compute nodes

• Use srun to execute MPI containers
srun singularity exec --bind ${BIND_ARGS} \
${CONTAINER_PATH} my_mpi_binary ${APP_PARAMS}
• Be aware your container must be compatible with Cray MPI (MPICH

ABI compatible) for good performance
• Configure suggestion: see next slide

• Open MPI based containers need workarounds and are not well
supported on LUMI at the moment (and even more problematic for the
GPU)

Environment enhancements (1)

• LUMI specific tools for container interaction provided as modules
• singularity-bindings/system (available via easyconfig)
• Sets the environment to use Cray MPICH provided outside the container
• Requires a LUMI software stack
• Use EasyBuild-user module and eb --search singularity-bindings to find the

easyconfig or copy from our LUMI Software Library web site
• Provides basic bind mounts for using the host MPI in the container setting
SINGULARITY_BIND and SINGULARITY_LD_LIBRARY_PATH

• lumi-vnc (LUMI and CrayEnv software stacks)
• Provides basic VNC virtual desktop for interacting with graphical interfaces via a

web browser or VNC client
• Open OnDemand a better alternative for many

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/s/singularity-bindings/

Environment enhancements (2)
Containerising tools
• cotainr (LUMI and CrayEnv software stacks)
• A tool to pack conda installations in a singularity container
• Use the singularity commands as shown on earlier slides to run

• lumi-container-wrapper (LUMI and CrayEnv software stacks)
• Supports conda and pip environments
• With pip: Python provided by the cray-python module (so there is an

optimised NumPy etc.)
• Software installation in two parts: a base container and a SquashFS file

which is mounted in that container with the conda/pip environment
• Provides wrappers to encapsulate your custom environment in a container

(so you don’t use singularity commands directly)
• Still helps with quota on the number of files in your project and I/O

performance

lumi-container-wrapper (1)

lumi-container-wrapper (2)

lumi-container-wrapper (3)

lumi-container-wrapper (4)

lumi-container-wrapper (5)

lumi-container-wrapper (6)

Environment enhancements (3):
Prebuilt containers for AI (and some others)
• Currently available

• PyTorch: Best tested
• TensorFlow
• JAX
• AlphaFold
• ROCm and mpi4py

• Where to find?
• /appl/local/containers/sif-images: Links to the latest version of each container
• /appl/local/containers/easybuild-sif-images: Images for EasyBuild

• Recommended for inexperienced users
• /appl/local/containers/tested-containers: Images linked to and docker tarballs

• Recommend to keep your own copy of the image you depend upon!

Running the AI containers
(Complicated way)
• The containers have everything they need to use RCCL and/or MPI on LUMI
• Need to take care of bindings:

• Need
-B /var/spool/slurmd,/opt/cray,/usr/lib64/libcxi.so.1,/usr/lib64/libjansson.so.4
at the minimum (and this list may change after a system update)

• And add access to your space in /project, /scratch and/or /flash (default is only the
home directory)

• Components that need further initialisation:
• MIOpen
• RCCL needs to be told the right network interfaces to use if you run across nodes
• GPU-aware MPI may need to be set up (see earlier in the course)
• Your AI package may need some too (e.g., MASTER_ADDR and MASTER_PORT for distributed

learning with PyTorch)
• Containers with Python packages are built using Conda

• Need to initialise the Conda environment via $WITH_CONDA in the container

Running the AI containers
EasyBuild (1)
• We provide EasyBuild recipes to “install” the containers and provide a module.

• For those packages for which we know generic usage patterns, we provide some scripts that
do most settings

• Define a number of environment variables to make life easier, e.g., generic bindings and a
variable referring to the container

• Newer versions (will) come with a Python virtual environment pre-initialised to add your own
packages
• No more $WITH_CONDA needed as the module takes care of injecting environment

variables in the container that have the same effect as the Conda and Python virtual
environment activate scripts

• Management of the Python virtual environment: Create a SquashFS file from the
installation

• Someone with some EasyBuild experience may further extend the recipe to, e.g.,
already install extra packages

Running the AI containers
EasyBuild (2)
• Install:

• Set up your user environment for EasyBuild (EBU_USER_PREFIX)
• Run
module load LUMI partition/container EasyBuild-user
eb PyTorch-2.2.0-rocm-5.6.1-python-3.10-singularity-20240315.eb

• After that the container module is available in all LUMI stacks and in CrayEnv

• Best to clean up afterwards before running (or take a new shell)
• Will copy the .sif-file to the software installation directory.

• To delete:
module load PyTorch/2.2.0-rocm-5.6.1-python-3.10-singularity-20240315
rm –f $SIF
module load PyTorch/2.2.0-rocm-5.6.1-python-3.10-singularity-20240315

• At your own risk as we may remove the image in /appl/local/containers without notice

Running: Example: Distributed learning
Without EasyBuild (1)
• Create file get-master.py:

import argparse
def get_parser():

parser = argparse.ArgumentParser(description="Extract master node name from Slurm node list",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument("nodelist", help="Slurm nodelist")
return parser

if __name__ == '__main__’:
parser = get_parser()
args = parser.parse_args()

first_nodelist = args.nodelist.split(',')[0]

if '[' in first_nodelist:
a = first_nodelist.split('[‘)
first_node = a[0] + a[1].split('-')[0]

else:
first_node = first_nodelist

print(first_node)

Running: Example: Distributed learning
Without EasyBuild (2)
• Create file run-pytorch.sh:

#!/bin/bash –e

Make sure GPUs are up
if [$SLURM_LOCALID -eq 0] ; then

rocm-smi
fi
sleep 2

$WITH_CONDA

Set MIOpen cache to a temporary folder.
export MIOPEN_USER_DB_PATH="/tmp/$(whoami)-miopen-cache-$SLURM_NODEID”
export MIOPEN_CUSTOM_CACHE_DIR=$MIOPEN_USER_DB_PATH

if [$SLURM_LOCALID -eq 0] ; then
rm -rf $MIOPEN_USER_DB_PATH
mkdir -p $MIOPEN_USER_DB_PATH

fi
sleep 2

Set ROCR_VISIBLE_DEVICES so that each task uses the proper GPU
export ROCR_VISIBLE_DEVICES=$SLURM_LOCALID

Report affinity
echo "Rank $SLURM_PROCID --> $(taskset -p $$)”

Set interfaces to be used by RCCL.
export NCCL_SOCKET_IFNAME=hsn0,hsn1,hsn2,hsn3
export NCCL_NET_GDR_LEVEL=3

Set environment for the app
export MASTER_ADDR=$(python get-master.py "$SLURM_NODELIST")
export MASTER_PORT=29500
export WORLD_SIZE=$SLURM_NPROCS
export RANK=$SLURM_PROCID

Run app
python -u mnist_DDP.py --gpu --modelpath model

Running: Example: Distributed learning
Without EasyBuild (3)
• Create job script my-job.sh:

#!/bin/bash –e
#SBATCH --nodes=4
#SBATCH --gpus-per-node=8
#SBATCH --tasks-per-node=8
#SBATCH --output="output_%x_%j.txt”
#SBATCH --partition=standard-g
#SBATCH --mem=480G
#SBATCH --time=00:10:00
#SBATCH --account=project_<your_project_id>

PROJECT_DIR=/project/your_project/your_directory
SIF=/appl/local/containers/easybuild-sif-images/lumi-pytorch-rocm-5.6.1-python-3.10-pytorch-v2.2.0-
dockerhash-7392c9d4dcf7.sif

c=fe
MYMASKS="0x${c}000000000000,0x${c}00000000000000,0x${c}0000,0x${c}000000,0x${c},0x${c}00,0x${c}0000
0000,0x${c}0000000000”

srun --cpu-bind=mask_cpu:$MYMASKS \
singularity exec \

-B /var/spool/slurmd \
-B /opt/cray \
-B /usr/lib64/libcxi.so.1 \
-B /usr/lib64/libjansson.so.4 \
-B $PROJECT_DIR:/workdir \
$SIF /workdir/run-pytorch.sh

Running: Example: Distributed learning
With EasyBuild
• Create job script my-job.sh:

#!/bin/bash –e
#SBATCH --nodes=4
#SBATCH --gpus-per-node=8
#SBATCH --tasks-per-node=8
#SBATCH --output="output_%x_%j.txt”
#SBATCH --partition=standard-g
#SBATCH --mem=480G
#SBATCH --time=00:10:00
#SBATCH --account=project_<your_project_id>

module load CrayEnv PyTorch/2.2.0-rocm-5.6.1-python-3.10-singularity-20240315

c=fe
MYMASKS="0x${c}000000000000,0x${c}00000000000000,0x${c}0000,0x${c}000000,0x${c},
0x${c}00,0x${c}00000000,0x${c}0000000000”

srun --cpu-bind=mask_cpu:$MYMASKS \
singularity exec $SIF \

conda-python-distributed -u mnist_DDP.py --gpu --modelpath model

Extending container 1:
cotainr
• It is possible to use the ROCm containers in /appl/local/containers/sif-images

as a base image for cotainr and build your own AI container
• Be careful which version of the AI software you use as wheels are likely for a specific ROCm

version (and you don’t want to pick up wheels for NVIDIA)
• MPI may be a problem as those containers do not yet provide a suitable mpi4py

• Process:
• Create a yaml file with the setup for Conda (see notes)
• Run cotainr:
module load LUMI/22.12 cotainr
cotainr build my-new-image.sif \

--base-image=/appl/local/containers/sif-images/lumi-rocm-rocm-5.4.6.sif \
--conda-env=py311_rocm542_pytorch.yml

• Run as a regular container
• Or find someone who want to make an EasyConfig to create a module and point EasyBuild to

the container .sif file with --sourcepath

Extending container 2:
singularity build
• Build a singularity-compatible container definition file, e.g.,

• And run:
module load LUMI/23.09 systools
singularity build my-new-container.sif my-container-definition.def
• Good way to add SUSE packages that may be needed to install extra software
• Tip: See demo 1: Start from a container with an EasyBuild module and the module might still

work…

Bootstrap: localimage

From: /appl/local/containers/easybuild-sif-images/lumi-pytorch-
rocm-5.6.1-python-3.10-pytorch-v2.2.0-dockerhash-f72ddd8ef883.sif

%post

zypper -n install -y Mesa libglvnd libgthread-2_0-0 hostname

Extending container 3:
Python virtual environment (1)
• Some newer containers installed with EasyBuild have a pre-initialised virtual

environment
• In the container available as /user-software/venv/<MyVEnv>
• Outside the container: $CONTAINERROOT/user-software/venv/<MyVEnv>
• And /user-software can also be used to install other software if needed…

• How?
$> module load LUMI
$> module load PyTorch/2.2.0-rocm-5.6.1-python-3.10-singularity-20240315
$> singularity shell $SIF
Singularity> pip install pytorch-lightning

Extending container 3:
Python virtual environment (2)
• But what about the many small files?
• Convert $CONTAINERROOT/user-software to a SquashFS file
make-squashfs
And reload the module…
• You can then delete the $CONTAINERROOT/user-software subdirectory if you need

the space (or file quota) and reconstruct it if needed with unmake-squashfs
• To add additional packages afterwards:

• Make sure the $CONTAINERROOT/user-software exists (outside the container)
• Delete $CONTAINERROOT/user-software.squashfs
• Reload the module
• And start a shell in the container…

• You can of course do this with any container with Python, also when not using
EasyBuild-built modules but the manual procedure takes a few more steps.

Container limitations on LUMI

• Containers use the host’s operating system kernel which may be different from
your system. Containers do not abstract hardware.
• A generic container may not offer sufficiently good support for the Slingshot 11

interconnect on LUMI and fall back to TCP sockets resulting in poor
performance, or not work at all.
• Solution by injecting Cray MPICH, but only for containers with ABI compatibility

with MPICH.
• Distributed AI: Need to inject the proper RCCL plugin.

• AMD driver version may pose problems also.
• Only very limited support for building containers on LUMI due to security

concerns.

Questions?

