Kurt Lust

Slurm on I.UMI LUMI User Support Team (LUST)

University of Antwerp

May 2024

What is Slurm? LUMI

* Slurm is a resource manager for supercomputers
* It manages nodes, CPU cores, GPUs, ...,
* starts jobs and cleans up after jobs,
* and can be used to start applicationsin a job

* and Slurm is a job scheduler:
* It assigns jobs to resources,
* based on policies sets by sysadmins to ensure a good use of the machine and a fair
distribution of resources among projects
* Most popular job scheduler and resource manager at the moment

* Though it is starting to show its age and has trouble dealing with the deep
hierarchy of resources on modern supercomputers

* So using Slurm will not always be as straightforward as we would like it...
* And there are some tricks needed on LUMI...

Slurm concepts: Physical resources LUMI

* Node: The hardware that runs a single operating system image
* Socket: On LUMI a physical socket
* Core: Physical core in a system

* Thread: Hardware thread (virtual core). Sometimes called SMT = Simultaneous
MultiThreading, or hyperthreads

* CPU: A “consumable resource” and can be different things on different systems.
On LUMI: core = CPU.

* We already see a big problem with Slurm: Three levels in the hierarchy of an
AMD Milan processor (socket, NUMA domain and L3 cache region/chiplet)
covered by only one concept.

* GPU: An accelerator, on LUMI one GCD of an Ml250X

Slurm concepts: Logical resources

* Partition: A job queue with limits and access control

* Job: A resource allocation request
Each job gets a unique job ID
* Job step: A set of (possibly parallel) tasks within a job

* The job script itself is a special step called the batch job step
* An MPI application typically runs in its own job step

* Task: Executes in a job step and corresponds to a Linux process:

* A shared memory program is a single task
* MPI application: Each rank (=MPI process) is a task
* Pure MPI: Each task uses a single CPU (also single core for us)
* Hybrid MPI/OpenMP: Each task uses multiple CPUs
* Asingle task can not use more CPUs than available in a single node

LUMI

Slurm is first and foremost a batch scheduler Y M/

* A clusteris alarge and expensive machine
* So the cluster has to be used as efficiently as possible

* Which implies that we cannot loose time waiting for input as in an interactive
program

* And few programs can use thg#vhole capacity (also depends on the problem to solve)
* So the clusteris ash resource, each simultaneous user gets a fraction of the

machine dependig#fon their requirements
* Moreover ther a lot of users, s(&e sometimes has to wait a little. "\

* Hence batch jobs (script with resource specifications) submitted to a queueing system
with a scheduler to select the next job in a fair way based on available resources and
scheduling policies.

* Though there are some facilities for interactive jobs

A Slurm batch script LUMI
{This is a bash script (but could be, e.g.,]

Perl which we do not encourage)

[#!/bin/bash]

’#SBATCH —--jobname=name_of_job)

#SBATCH --partition=small 4 _ _
#SBATCH --ntasks=2 --cpus-per-task=4 Specify the resources for the job (and
#SBATCH --mem-per-cpu=1g some other instructions for the

#SBATCH --time=01:00:00 ____————""'—"resourcernanageﬂ,butlookas

comments to Bash

#SBATCH --account=project_465000000 J
. . . . \

#SBATCH --output=stdout.file Build a suitable environment for your

(#SBATCH --error=stderr.file) job. The script runs where you

i launched the batch job!

module load LUMI/23.09 partition/C /

Module load lumi-CPEtools/1.1-cpeCray-23.09

> - The command(s) that you want to
S noiriie EEER execute in your job.

LUMI

Slurm partitions

* Slurm partitions are (possibly overlapping) groups of nodes with similar resources or
associated limits

 Each partition targets a particular job profile and can have its own policies to support
that profile

* Two types of partitions on LUMI
* Exclusive node use by a single job
* Ensures a clean environment for large parallel jobs
* Possible to map tasks on available resources for optimal performance
* Allocatable by resources (CPU and GPU)
* Nodes are shared by multiple users and multiple jobs

 The distribution of cores is not always continuous nor is a proper mapping of cores onto GPU
ensured

* Fragmentation of resources is a real problem!

* Default settings for certain Slurm parameters can differ per partition
* Use common sense when requesting resources

Slurm partitions (2)

Slurm partitions allocatable by node (exclusively)

standard-g

standard

small-g
dev-g
small
debug
largemem

lumid

2 days
2 days

Slurm partitions allocatable by resources (shared)

3 days

6 hours

3 days

30 minutes
1 day

1 day

210 (200 running)

120 (100 running)

210 (200 running)
2 (1 running)

220 (200 running)
2 (1 running)

30 (20 running)

10 (10 running)

1024 nodes

512 nodes

4 nodes
16 nodes
4 nodes
4 nodes
1 node

1 node

LUMI

LUMI-G
LUMI-C

LUMI-G
LUMI-G
LUMI-C
LUMI-C
LUMI-D CPU
LUMI-D viz GPU

Slurm partitions: Useful commands LUMI

* List of available partitions
sinfo -s
* Partition details
scontrol show partition <partition-name>

sinfo -s

LUMI

sinfo -o "%11P %.5a %.101 %.20F Z%N"
Allocated/Idle/Other/Total

PARTITION AVAIL TIMELIMIT

debug up
interactive up
g _fiqci up
g_industry up
g_nordiq up
small up
standard up
dev-g up
small-g up
standard-g up
largemem up

lumid up

30:
:00:
100
100
100
:00:
:00:
:00:
:00:
:00:
:00:
:00:

15
15
15

00
00

00
00
00
00
00
00
00

NODES (A/I/0/T)
1/7/0/8
3/1/0/4
0/1/0/1
0/1/0/1
0/1/0/1

244/45/17/306
1613/0/115/1728
24/22/2/48
191/2/5/198
2359/30/339/2728
0/5/1/6

1/6/1/8

NODELIST
nid[002500-002501,..]
nid[©02502,002507...]
nidoo

el Restricted access
nidoo
nid[002280-002499,..]
nid[001000-002279,..]
nid[005002-005025,..]
nid[005026-005123,..]
nid[005124-007851]
nid[©000101-000106]
nid[0©00016-000023]

Accounting of jobs LUMI

* The use of resources by a job is billed to projects, not users
* As users can have multiple projects, you have to specify the project account
(project_46YXXXXXX) with every command that creates an allocation
* Billing is based on what others cannot use because of your job
* Taking into account a proportional use of cores, memory and GPUs (actually GCDs)

* E.g., ask for one core but half the memory of a CPU node and you will be billed for half a
node, even when using the small partition

* Ask for one core or one GPU in the standard or standard-g partition and you will be billed
for the whole node

* Billing based on the number of cores, the amount of memory and the number of GPUs.

* Slurm accounting features do not produce the correct numbers
* Check the state of your allocation with Tumi-workspaces or lumi-allocations

Queveing and fairness LUMI

* The Slurm partition setup of LUMI prioritises to some extent larger jobs
* And most nodes are reserved for jobs that use them exclusively (standard partitions)

* Your job is queued until resources are available for the requested time window
 Each job has a unique job ID which is a number

* Each job also has an evolving priority (depending on size, how much you have run recently,
how long the job has been in the queue)

* Soyou're not served in a first come, first served way!
* Factors that decides on your job's queue priority: sprio
* Fairshare isa mechanism that favours users/projects that haven’t been running
a lot in the past few days

* Backfill: If a small job fits into the gap left when collecting resources for a bigger job,
that job may be started even though it is not the highest priority job

Managing Slurm jobs LUM I

squeue to examine the job queue
* Flag --me is an alias for list of your jobs
* Flag --start shows the current estimate for the start time of your job

scancel <jobID> will cancel the job with the given joblID.

sstat -j <job> will show information about the running job with given joblD.
* Real-time information gathered from the resource manager component of Slurm

* See later in this presentation

* sacct -j <jobID> will show information about any job, also when finished
* Information from the Slurm accounting database, so with some delay

* See later in this presentation

https://slurm.schedmd.com/archive/slurm-22.05.10/squeue.html
https://slurm.schedmd.com/archive/slurm-22.05.10/scancel.html
https://slurm.schedmd.com/archive/slurm-22.05.10/sstat.html
https://slurm.schedmd.com/archive/slurm-22.05.10/sacct.html

Creating a Slurm job LUMI

Slurm has three commands to create jobs and start job steps in a job:

* salloc only creates an allocation but no job step.
* Shell on the node on which the command is issued, not on the compute resources
* Leave the shell (control-D or exit) to end the allocation
* Good for interactive work

* srun creates a job step in an allocation
* When run outside an allocation it will also create an allocation
* Be careful when using it to also create an allocation as some options work differently as for the
commands meant to start an allocation
* sbatch creates an allocation and then the batch job step to run the job script
* Resources for the batch job step are not always what you expect
* Use srun to create further job steps

LUMI

Passing options to srun, salloc and sbatch

* Lowest priority (for sbatch): Using #SBATCH lines at the start of the bash script
* These lines should not be interrupted by commands in the script

* Pass through environment variables:

e SBATCH_* for sbatch, SALLOC_* for salloc, SLURM * and SRUN_* for srun
* Will overwrite values on #SBATCH lines

* See the manual pages of sbatch, salloc and srun

* Risk: You forget that they exist...

* Highest priority: Flags and options given on the command line

* Specify before the job script (sbatch) or before the command to execute (srun) as otherwise
they will be considered options of the batch script or command respectively

* Override options in #SBATCH lines and environment variables

* Several options given to sbatch and salloc are also forwarded to srun commands in
the job script (via SLURM_* environment variables)

https://slurm.schedmd.com/archive/slurm-22.05.10/sbatch.html
https://slurm.schedmd.com/archive/slurm-22.05.10/salloc.html
https://slurm.schedmd.com/archive/slurm-22.05.10/srun.html

Specifying options LUMI

* Slurm commands have way more options than we can discuss and if and how they work
may depend on the specific configuration of Slurm
* Slurm commands can exist in two variants:
* Long variant with double dash: --long-option=<value>or --long-option <value>
* Single-letter variant with single dash: -S <value> or -S<value>

* Not all combinations are valid, and use common sense
* Overspecifying resources may not be a good idea
» Underspecifying resources isn't a good idea either as some defaults may be used
* Some combinations for resources just don’t make sense
* In the following slides we’ll try to structure this a bit

Some common options to all partitions LY M!

* For some resources a different strategy should be used for “allocatable by node” and
“allocatable by resource” partitions and this will be discussed later.

e Common to both:

* Specify the account: --account=project 46YXXXXXXor -A project_46YXXXXXX
Job will not run without!

* Specify the partition: --partition=<partition>or-p <partition>

* Maximum wall time for the job: --time=<timespec> or-t <timespec>
minutes, minutes:seconds, hours:minutes.seconds and more

* Name of the job: --job-name=<name> or -J <name>
* More readable output of squeue
* Can be used to name output files also

* Specifying a reservation: --reservation=<names>: Use resources from the given reservation(s)
* For trainings or the “hero runs”

* Mail options exist but currently do not work on LUMI

LUMI

Redirecting output

* Using --output/-oand --error/-e
* No --output and no --error : stdout and stderr redirected to slurm-<jobid>.out
* Use --output but no --error: stdout and stderr redirected to the given file

* No --output but --error specified: stdout redirected to slurm-<jobid>.out, stderrto
the file given with --error

* Both --output and --error: stdout redirected to the file pointed to by - -output and
stderr redirected to the file pointed to by --error.

* Itis possible to insert codes in the file name that will be replaced with the
corresponding Slurm information when the job starts.
* Examples are “%x" for the job name or “%3j" for job id.
* See the manual page of sbatch, section “filename pattern”.

https://slurm.schedmd.com/archive/slurm-22.05.10/sbatch.html
https://slurm.schedmd.com/archive/slurm-22.05.10/sbatch.html

LUMI

Requesting resources: CPUs and GPUs

Two strategies:

* “Per-node allocations”: Request suitable nodes (number and partition) with sbatch or
salloc, can postpone specifying the job step structure (tasks etc.) until the job step is run
* Logical ways of allocating resources on “allocatable-by-node” partitions
* On “allocatable per resource” partitions: Use - -exclusive with sbatch and salloc
. _UII‘;imate flexibility in the job as you can run multiple job steps with a different structure in the same
jo
* Binding (next session) fully supported
* “Per-core allocations”: Specify the job step structure and optionally limit the choice of slurm
by also specifying the number of nodes
* Works on “allocatable-by-resource” and “allocatable-by-node” partitions
* Without knowing the job step structure Slurm cannot create a correct allocation
* Restrictions when you want to also use a different job step structure in the same step
* Restrictions on the bindings that can be done afterwards

LUMI

Per-node allocations

Specify the partition: --partition=<partition>or-p <partition>
Specify the number of nodes: - -nodes=<number> or -N <number>
In a allocatable-by-resource partition, specify - -exclusive

We now have all cores and all GPUs in the requested nodes available, and
* All memory on the allocatable-by-node partitions
* But not on the allocatable-by-resource partitions: 112GB on small and 64 GB on small-g
* Request all available memory in a node: - -mem=0
* Safer: Request the maximum reasonable amount for the node: the memory capacity minus 32 GB.
* --mem=224G for the reqgular compute nodes of LUMI-G (small and standard partitions)
* --mem=480G for LUMI-G (small-g, standard-g) and the 512 GB nodes of LUMI-C (small only)
¢ --mem=992G for the 1 TB nodes of LUMI-C (small only)
This makes sense on standard and standard-g also

* ...And you're done, but if you insist ...

LUMI

Per-node allocations: CPUs

* You will get all the CPUs on the allocated nodes so no need to explicitly request them as
a resource
 Butif you insist:
* No option to request "CPUs per node” in one go, instead
* --sockets-per-node=<nr_sockets> --cores-per-socket=<nr_cores>
e LUMI-C: --sockets-per-node=2 --cores-per-socket-64

* LUMI-G: --sockets-per-node=1 --cores-per-socket=56
due to the low-noise mode

* Shortcut via - -extra-node-info=<nr_sockets>[:nr_cores>] or
-B =<nr_sockets>[:nr_cores>]

* LUMI-C: --extra-node-info=2:64
* LUMI-G: --extra-node-info=1:56
* Note --threads-per-core=2 does not work
* See later for how to enable/disable hyperthreading

LUMI

Per-node allocations: GPUs

* You will get all the GPUs on the allocated nodes so no need to explicitly request them as
a resource

 Butif you insist, 3 options:
* Most logical: --gpus-per-node=8or --gpus-per-node=mi250:8
* Lower than 8 also possible, but it does not make sense as you are billed for them anyway
* Total number of GPUs in the job using - -gpus=<number> or -G <number>
* Be careful when you adapt the number of nodes (or don’t request all GPUs)!
* Equivalentto --gpus-per-node: --gres=gpu:8, or --gres=gpu:mi250:8
* GRES = Generic consumable RESource
* Multiple types possible so need to specify the type gpu
* As these are forwarded to srun, it will save you from specifying them there

 Options to specify number of CPUs and number and type of GPUs in a per-node
allocation are more meant for clusters with heterogeneous partitions

LUMI

Per-node allocations: Starting a job step

* Job script starts in the batch job step
 Canrun serial and shared-memory multithread programs
* But not always the environment that you expect: All hardware threads on the first node of the
allocation.
* From salloc: Shell on the login nodes, so a new job step needed to run on the
compute nodes

* Command to start a new job step: srun
* Typical case: Creates a number of equal-sized tasks, so needs
* Number of tasks
* CPUs per task (with or without hardware threading)
* In some cases: GPUs accessible to each task
* Multiple ways of doing this, we propose one possible scheme:

LUMI

Per-node allocations: Starting a job step (2)

* Specifying the number of tasks
* Eithertotal number: --ntasks=<number>, or-n <number>
* Risk: Forget to adapt when adapting number of nodes

» Advantage: In some cases the number of tasks will not be a multiple of the number of
nodes, and not all nodes can have the same number of tasks

* Or per node: --tasks-per-node=<number>: Logical in a per node allocation but broken...
* Only works as arugment for sbatch, or remove SLURM_NTASKS and SLURM_NPROCS.

* Specify the number of CPUs (cores on LUMI) for each task:
--cpus-per-task=<number> or-c <number> to bind CPUs to tasks

* GPUs: In theory...
* GPUs exclusive for a task: - -gpus-per-task=<number> to bind GPUs to each task
* GPUS shared with multiple tasks: - -ntasks-per-gpu=<number>
* But this does not work with many applications...

* Options can be specified via #SBATCH but some issues with --cpus-per-task

A warning for GPU applications LUMI

* This way of allocating GPUs for each task comes with a problem:
* Slurm uses a separate control group per task for the GPUs
* Linux way for restricting resources available to a process and its children
* Which restricts ways intra-node communication can be done between GPUs
* Which in turnis incompatible with some software

* Different solution with manual binding in the next presentation.

* So avoiding any binding by srun, implying no use of --gpus-per-taskor
--ntasks-per-gpu

* and use ROCm runtime features to do a binding.
* Unfortunately AMD GPUs in Slurm are still complicated...

Turning hardware threading on or off LUMI

* Hardware threads are enabled by default at the system level

* In Slurm on LUMI they are disabled by default in regular job steps
* Turning them on: #SBATCH --hint=multithread

* Turning them off: #SBATCH --hint=nomulthread
Not needed as this is the default

* Effect corresponds to allocating by thread in “srun’, first using both hardware threads of the
first available core, etc.

* So --cpus-per-task=4, with srun will give 4 hardware threads on 2 cores

* When used with srun, srun will not complain but the outcome is wrong
» See the notes if you are interested, to detailed for this lecture

Example hardware threading on (1) LUMI

#! /usr/bin/bash

#SBATCH --job-name=slurm-HWT-standard-multithread
#SBATCH --partition=standard

#SBATCH --nodes=17

#SBATCH --hint=multithread

#SBATCH --time=2:00

#SBATCH --output=%x-%j.txt

#SBATCH --account=project_46YXXXXXX

module load LUMI/23.09 partition/C lumi-CPEtools/1.1-cpeGNU-23.09
echo -e "Job script:\n$(cat $0)\n"

set -x
srun -n 1 -c 4 omp_check -r
set +x

sleep 2
echo -e "\nsacct for the job:\n$(sacct -j $SLURM_JOB_ID)\n"

Example hardware threading on (2) LUMI

+ srun -n 1 -c 4 omp_check -r

Running 4 threads in a single process

++ omp_check:
++ omp_check:
++ omp_check:
++ omp_check:

+ set +x

OpenMP thread 0/4 on
OpenMP thread 1/4 on
OpenMP thread 2/4 on
OpenMP thread 3/4 on

sacct for the job:

JobID

JobName Partition

cpu 0/256
cpu 1/256
cpu 128/256
cpu 129/256

Account

of nid001847 mask 0-1, 128-129
of nid001847 mask 0-1, 128-129
of nid001847 mask 0-1, 128-129
of nid001847 mask 0-1, 128-129

4238728

slurm-HWT+ standard

4238728 .bat+ batch

4238728.0

omp_check

project_4+
project_4+
project_4+

AllocCPUS State ExitCode
256 RUNNING 0:0

256 RUNNING 0:0

4 COMPLETED 0:0

LUMI

Per-core allocations: When to use?

* If your job is too small to fill a complete node and you want to consume less billing units

* But
* Less control over allocation of cores and GPUs

* So performance penalty for codes that depend on proper mapping of tasks on L3 cache
regions, NUMA nodes and/or socket or on having the closest GPU to each task

* And this penalty is also unpredictable
e Slurm

* Has problems with the GPU topology on LUMI

* Does not support the hierarchy in the compute nodes of LUMI: One can only request nodes or
cores, not L3 cache regions, NUMA nodes or sockets

* Resources can be spread over more than the minimal number of nodes
* And Slurm needs to know how they will be used at job allocation time

LUMI

Per-core allocations: Resource request (1)

* Slurm must know the intended use: More flexibility to allocate 4 4-thread MPI ranks
than 1 16-core shared memory run

* Specify job step structure in #SBATCH lines

* Specify first the number of tasks
e --ntasks=<number>, or-n <number>recommended
* Possible to restrict the number of nodes: --nodes=<number> or - -nodes=<min>-<max>
* Canuse --ntasks-per-node with --nodes, but it does not make much sense.
* If you can fill up nodes you can better use a per node allocation

* If you cannot fill up a node it doesn’t make much sense to spread over more nodes than the
minimal number and let the remaining cores fill up with tasks from other users

Per-core allocations: Resource request (2) LY M]

* Specify the number of CPUs (cores) needed for each task
e Use --cpus-per-task=<number>, or-c <number>
* Note: --cpus-per-task nolonger propagated to srun, but patch on LUMI (that fails in
some cases)

* LUMI-G: Specify the number of GPUs required

* Easy but flawed way:

* Use --gpus-per-task=<number> to bind one or more GPUs to a single task

s Use ntocko - per-cpu=<number s 4GRPYsare shared-by-multiple tasks
* This will at least ensure that cores and GPUs are spread across nodes in the right way
* But with srun the binding issue will reappear

* Solveable but tricky

Per-core allocations: Resource request (3) LY MI

* Memory
* --mem-per-task does not exist unfortunately, instead in function of other resources:
* --mem-per-cpu=<number>: Memory per allocated core (use k, m, g)

e --mem-per-gpu=<number>: System memory per allocated GPU, but not GPU memory!
* --mem=<number> only makes sense on a single node

Warning: Allocation per socket? LUMI

* Allocations per socket with --sockets-per-node, and --ntasks-per-socket?

* No!

* --sockets-per-node specifies a property of the node that you want and is not used to ask
for just a single socket

* Andirrelevant on LUMI
* --ntasks-per-socket does not work the same as - -ntasks-per-node:
e --ntasks-per-node : exact number
e --ntasks-per-socket : maximum number
¢ Sometimes every word in the manual page matters!

LUMI

Per-core allocation: Different job steps (1)

* srun can use a different job step structure
* If there are no more tasks than requested via #SBATCH and no more resources per task than
requested via #SBATCH

* Orif an entire number of tasks in the new structure fits in the tasks request by #SBATCH and
the total number of tasks is not more than the original number of tasks multiplied with that

entire number
* Some other cases may work or may not work depending on the actual allocation

* With GPUs things become very complicated to avoid binding issues if Slurm’s way of binding
does not work for you

Per-core allocation: Different job steps (2) LUMI

* Example: Create an allocation suitable for 4 MPI processes with 4 cores each:
#SBATCH --ntasks=4
#SBATCH --cpus-per-task=4
Multithreaded program started without srun
* Would runin the batch step, so all allocated cores in the first node of the allocation
e --hint=nomultithread not enforced
* Socould be runningon 4 C/8 HWT, 8C /16 HWT, 12C/ 24 HWT or16 C/32 HWT

srun --ntasks=1 --cpus-per-task=3: No problems
* srun --ntasks=2 --cpus-per-task=4: No problems
* srun --ntasks=4 --cpus-per-task=1: No problems

* srun --ntasks=16 - -cpus-ﬂer‘—task=1: Works as 4 of these tasks fit in every original
task and the total number is not higher than 4*4.
e srun --ntasks=1 --cpus-per-task=16
* Will produce a warning because the task is bigger than the original task
* But will work if you're lucky and all cores are on one node

LUMI

The job environment

* Job steps started with sbatch, salloc or srun inherit the environment
* Natural behaviour for salloc, as it starts a shell on the calling node
* Very useful for srun, and it would be a pain otherwise
* May be surprising to some for sbatch as the environment for the login nodes may not be the
best for the compute nodes

* Change the job(step) environment with --export:
* --export=NONE: Do not pass the environment, but Slurm will attempt to create a new user
environment even if no login shell is used in the batch script.
* --export=ALL,PAR1=VALUEL: Pass the variables from the environment and add the variable
PAR1 with value VALUE1.
* Fragile! Acomma in the value VALUE1 will have unexpected results.
 Usefull with srun in a heterogeneous job to pass different values of an environment
variable to different parts of the heterogeneous jobs, e.g., a different value for
OMP_NUM_THREADS

LUMI

Passing arguments to a batch script

* If the same batch script is used for multiple computations, it may be useful to be pass
arguments to that script.

* Arguments on the sbatch command line after the script are passed to the script and can
be accessed as reqular bash script arguments through $1 etc.

* Sono need to use --export for that even though it is possible
* Note: $0 is the full path to the batch script but will actually refer to a buffered copy!

Passing arguments: Example LUMI

#! /usr/bin/bash

#SBATCH --partition=small

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=1

#SBATCH --time=5:00

#SBATCH --account=project_46YXXXXXX

echo "Batch script parameter 0: $0"

echo "Batch script parameter 1: $1"

echo "Environment variable PAR1: $PAR1”

with

$ sbatch --export=ALL,PAR1="Hello" slurm-small-parameters.slurm ‘Wow, this works!’
will produce

Batch script parameter 0: /var/spool/slurmd/job4278998/slurm_script

Batch script parameter 1: Wow, this works!

Environment variable PAR1: Hello

Automatic requeveing LUM I

* LUMI uses the Slurm automatic requeueing of jobs upon node failure
* Your job is automatically resubmitted if any of its allocated nodes fail
* Identical job ID is used and the previous output truncated

* If this bothers you:
* Disable automatic requeueing with --no-requeue option
* Avoid your output file being truncated with - -open-mode=append option
* Detect restart in the job script: Use the value of SLURM_RESTART_COUNT
* Starts at @ for the first run and is incremented at every restart

Job dependencies LUMI

* LUMI does not allow extreme run times, but you can use job dependencies to schedule
multiple jobs that should execute one after another

* E.g, sbatch --dependency=afterok:<jobID> jobdepend.slurmwill only start
the job defined by jobdepend.slurm after the job with job ID has finished successfully
* Many other possibilities, including
* Start another job only after a list of jobs have ended
* Start another job only after a job has failed
* And many more, check the sbatch manual page and |ook for - -dependency.

* How to get the jobID? - -parsable option of sbatch
first=$(sbatch --parsable jobfirst.slurm)
sbatch --dependency=afterok:$first jobdepend.slurm

https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/sbatch.html

LUMI

Interactive jobs with salloc

* Using salloc
* creates a pool of resources reserved for interactive execution

* and starts a new shell on the node where you called salloc (usually a login node)
* Assuch it does not take resources away from other job steps that you will run

» Execute any sequential, shared memory, distributed memory or hybrid code on the
allocated compute nodes using srun

* Obtaining an interactive shell on the first allocated node: srun --pty $SHELL
* But will take away resources from other job steps!

* Terminate the allocation by exiting the shell with exit or ctrl-D

* Good for, e.g., development of batch script

salloc --account-project 46YXXXXXX --partition=standard --nodes=2 --time=15

LUMI

Interactive jobs with srun

* Good to get an interactive shell with one or more cores to work directly in the shell, e.g.,
for compilation
* But not ideal to spawn further job steps with srun as the interactive shell already fills a task slot

* You'd rarely need a whole node for that kind of work so small and small-g may be your partitions
of choice

* To start:
srun --account=project 462YXXXXXX --partition=<partition> \
--ntasks=1 --cpus-per-task=<number> --time=<time> --pty $SHELL
srun -A project 462YXXXXXX -p <partition> -n 1 -c <number> -t <time> --pty $SHELL

* To end: Exit the shell with exit or ctrl-D

LUMI

Inspecting a running job

* Avariant of the srun scenario on the previous slide

* But now
* Do not need a new allocation, as that already exists, so need to specify that allocation
* Usually the job will be using all its resources, so need to overlap resources with those of
already running job steps

* To start an interactive shell on the first allocated node of a specific job/allocation:
srun --jobid=<jobid> --overlap --pty $SHELL

* To start an interative shell on another node of the job:
srun --jobid=<jobid> --nodelist=nid@OXXXX --overlap --pty $SHELL
srun --jobid=<jobid> -w nid@OXXXX --overlap --pty $SHELL

* Instead of a shell you could also directly run a command, e.g., top
* Note: You can see which nodes are allocated to a job via squeue, sstat or salloc.

Job arrays LUMI

* Mechanism to submit a large number of related jobs with the same batch script at once

r {job_ar‘r'ay.slur‘m}\
#!/bin/bash

#SBATCH --partition=small

#SBATCH --ntasks=1 --cpus-per-task=1 --mem-per-cpu=1G
#SBATCH --time 15:00

INPUT_FILE="input_${SLURM_ARRAY TASK ID}.dat" & for every run, there is a
OUTPUT_FILE="output ${SLURM ARRAY TASK ID}.dat" separate input file and

an associated output file
./test_set -input ${INPUT_FILE} -output ${OUTPUT FILE}
_ J

$ sbatch --array 1-50 job_array.slurm

* Will generate 50 jobs, run with SLURM_ARRAY_TASK_ID going from 1to 50

LUMI

Heterogeneous jobs

* Run one or more executables in multiple configurations within one MPI_COMM_WORLD
 E.g., simulation code that uses separate I/O servers

* Two ways
* Create groups in #SBATCH lines, separated by #SBATCH hetjob lines, and recall these groups
with srun
* Just reserve the nodes and do the rest with srun, separating parts with a colon

* Slurm support is not very good
* Treated as multiple jobs which can give problems with scheduling
* Only in srun: Still separate job steps that like to run on separate nodes

* Example 2 components in the heterogeneous job:
* Part 1: Application A on 1 node with 32 tasks with 4 OpenMP threads each
* Part 2: Application B on 2 nodes with 4 tasks per node with 32 OpenMP threads each

Heterogeneous jobs: Example with #SBATCH LU M|

#! /bin/bash

#SBATCH --account=project_ 46YXXXXXX
#SBATCH --partition=standard
#SBATCH --nodes=1

#SBATCH --ntasks-per-node=32
#SBATCH --cpus-per-task=4
#SBATCH hetjob

#SBATCH --partition=standard
#SBATCH --nodes=2

#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=32

unset OMP_NUM_THREADS

srun --het-group=0 --cpus-per-task=4 --export=ALL,OMP_NUM THREADS=4 ./app A : \
--het-group=1 --cpus-per-task=32 --export=ALL,OMP_NUM_ THREADS=32 ./app_ B

* This is an example where the patch for the modified behaviour of srun with respect to -
-cpus-per-task does not work.

Heterogeneous jobs: Example with srun Y M

#! /bin/bash

#SBATCH --account=project_ 46YXXXXXX
#SBATCH --partition=standard
#SBATCH --nodes=3

unset OMP_NUM_THREADS

srun --ntasks=32 --cpus-per-task=4 --export=ALL,OMP_NUM THREADS=4 ./app A :
--ntasks=8 --cpus-per-task=32 --export=ALL,OMP_NUM THREADS=32 ./app B

srun --nodes=1 --ntasks-per-node=32 --cpus-per-task=4 ./app A : \
--nodes=2 --ntasks-per-node=4 --cpus-per-task=32 ./app B

Simultaneous job steps LUM I

* Itis possible to have multiple simultaneous job steps in a single allocation
#! /usr/bin/bash

srun -n4 -cl6 exel &
sleep 2

srun -n8 -c8 exe2 &
wait
* Remarks

* Can be useful if you want to do proper binding but cannot fill a node with a single run

* sleep command: To avoid errors from srun about not being ready to start a step

* Thewait command is important as otherwise the job would be killed instantly!

* Tricky with binding (next session) and/or GPUs, may need --overlap

+ --exact may be useful to guarantee the exact resources are available to each job step?
* Makes most sense on exclusive nodes; known problems on LUMI in other cases

Job monitoring commands LUMI
Real-time information about running jobs: sstat (1)

* Show (a lot of) real-time information about a particular job or job step:
sstat -j 1234567
sstat -j 1234567.0

* Itis possible to specify a subset of fields to display using the -0, --format or --fields
option.
* Example for an MPI job: Get an idea of the load balancing:

$ sstat -a —j 1234567 -o JobID,MinCPU,AveCPU
JobID MinCPU AveCPU

1234567 .bat+ ©00:00:00 00:00:00
1234567.1 00:23:44 00:26:02

* Shows for each job step the minimum and average amount of consumed CPU time.
* Step1in this case is an MPI job with a slight load inbalance
* Asstep oisnt running anymore, we don't get to see it

Job monitoring commands LUMI
Real-time information about running jobs: sstat (1)

* Check resident memory:
$ sstat -a -J 1234567 -o JobID,MaxRSS,MaxRSSTask,MaxRSSNode
JobID MaxRSS MaxRSSTask MaxRSSNode
1234567 .bat+ 25500K © nideo1522
1234567.1 153556K © nideo1522

Job monitoring commands
Information about (terminated) jobs: sacct (1)

 sacct shows information kept in the job accounting database.
* So for running jobs the information may enter only with a delay
* The command to check resource use of a finished application

* Default output for a job:
$ sacct -j 1234567

LUMI

State ExitCode

COMPLETED
COMPLETED
COMPLETED

JobID JobName Partition Account AllocCPUS
1234567 healthy u+ standard project_4+ 512
1234567 .bat+ batch project 4+ 256
1234567.0 gmx_mpi d project_4+ 2
1234567.1 gmx_mpi d project_4+ 512

 Select what you want to see:
* --brief:Very little output, just the state and exit code of each step
* --long:Alot of information, even more than sstat
* -oor--format : Specify the columns you want to see

COMPLETED

Job monitoring commands LUMI
Information about (terminated) jobs: sacct (2)

* Example: Get resource use of a job:
$ sacct -j 1234567 --format JobID%-13,AllocCPUS,MinCPU%15,AveCPU%15,MaxRSS,AveRSS

--units=M

JobID AllocCPUS MinCPU AveCPU MaxRSS AveRSS
1234567 512

1234567 .batch 256 00:00:00 00:00:00 25.88M 25.88M
1234567.0 2 00:00:00 00:00:00 5.05M 5.05M
1234567.1 512 01:20:02 01:26:19 173.08M 135.27M

* This was a two node MPI job with very little memory use per task

e --units=Mto get output in megabytes rather than kilobyes

* %15 in some field names: Use a 15 character wide field rather than the standard width
* %-13: Similar, but left justified

e List of all fields: sacct --helpformatorsacct -e

Job monitoring commands LUMI
Information about (terminated) jobs: sacct (3)

* Selecting jobs to show information about:
* By default: All jobs that have run since midnight

* --jobs or -j: give information about a specific job or jobs (when specifying multiple jobids
separated by a comma)

e --starttime=<time> or -S <time> : Jobs that have been running since the indicated start
time, format: HH:MM[:SS] [AM|PM], MMDDI[YY] or MM/DD[/YY] or MM.DDI.YY],
MM/DD[/YY]-HH:MM[:SS] and YYYY-MM-DD[THH:MM[:SS]] ([] denotes an optional part)

* --endtime=<time> or -E <time> :Jobs that have been running before the indicated end
time.

* There are way more features to filter jobs, but some of them are mostly useful for
system administrators

* More information: sacct manual page

https://slurm.schedmd.com/archive/slurm-22.05.10/sacct.html

Job monitoring commands LUMI
Generating reports from Slurm accouting data: sreport

* sreport isa Slurm tool to extract reports from the Slurm accounting database

* But much of that information is of little use on LUMI as the billing is not done by Slurm but
by an external script that gets its data from the Slurm accounting database

* And hence the correct billing information is not available in the Slurm accounting
database nor can it be easily derived from summary reports.

* E.g., the amount of core hours reported is for all partitions and hence irrelevant to
compute CPU billing units consumed

LUMI

Questions?

