
Modules on LUMI Kurt Lust
LUMI User Support Team (LUST)

University of Antwerp

May 2024

Module environments

• Modules are used on HPC systems to enable users to create custom
environments and select between multiple versions of applications
• And applications on HPC systems are installed in non-standard places

• 3 systems in use
• Original module tool written in C with modules in Tcl, development halted

• New implementation in Tcl with many new features, developed at INRIA

• Not supported by HPE Cray

• Lmod, an implementation in Lua with native module files in Lua but support
for most Tcl module files

• We chose Lmod for LUMI

Exploring modules with Lmod

• Contrary to some other module systems, not all modules are immediately available
for loading
• Installed modules: All modules on the system that can be loaded one way or another

• Available modules: Can be loaded without first loading another module

• Examples in the HPE Cray PE:

• cray-mpich requires a compiler module and network target module first

• Many of the performance monitoring tools require perftools-base first

• cray-fftw only becomes available when a processor target module is loaded

• Tools

• module avail searches in the available modules

• module spider and module keyword search in the installed modules

Benefits of a hierarchy

• When well designed, you get some protection from loading modules that
do not work together well
• Only partially implemented on LUMI

• When “swapping” a module that makes other modules available with a
different one, Lmod will try to look for equivalent modules in the new
hierarchy
• Example: Try module load PrgEnv-aocc in the default login environment

and see what happens

module load PrgEnv-aocc

Module names and families

• In Lmod you cannot have two modules with the same name loaded
together
• On LUMI, when loading a new module the other one with the same name

will be automatically unloaded
• Automatic protection from conflicts

• Extension: family concept: No two modules of the same family can be
loaded together
• E.g., make compilers member of the family “compiler”
• On LUMI, the conflicting module of the same family will be unloaded

automatically

Extensions

• It would not make sense to have a separate module for each of the
hundreds of R packages or tens of Python packages a software stack may
contain.
• Would actually also create a performance problem due to excess metadata

access and long PATH variables
• Bundle related packages in a single module

• Lmod solution: A module can define a list of extensions, basically other
packages provided by the module.
• And the regular commands can be used to search for these
• Unfortunately not used in the HPE Cray PE cray-python and cray-R modules

module spider

• module spider : Long list of all installed software with short description
• Will also look into modules for “extensions” and show those also, marked with

an “E”

• module spider FFTW : Look for the FFTW libraries on the system

• module spider cray-fftw/3.3.10.5: Look for this specific version
• But this immediately shows the problems with the HPE Cray PE

• Some of the lines don’t make much sense (see later)

• Some options are missing also

module spider (command) (1)

module spider (command) (2)

module spider (command) (3)

module spider FFTW

module spider cray-fftw/3.3.10.5

module spider cray-fftw/3.3.10.5 (2)

module spider for a regular package

• module spider gnuplot : Shows all versions of gnuplot on the system

• module spider gnuplot/5.4.8-cpeGNU-23.09 : Shows help
information for the specific module, including what should be done to
make the module available

module spider gnuplot

module spider gnuplot (2)

module spider gnuplot/5.4.8-cpeGNU-23.09

module spider gnuplot/ 5.4.8-cpeGNU-23.09 (2)

module spider for extensions

• No example in the default Cray modules, so examples come from the LUMI
software stacks

• module spider CMake
• module spider CMake/3.27.7 : Will tell you which module contains

this version of CMake and how to load it

module spider CMake

module spider CMake/3.27.7

module keyword

• Searches in the module short description and help message for the
keyword.
• E.g., try
module keyword https

• We do try to put enough information in the modules to make this a
suitable additional way to discover software that is already installed on
the system

module keyword https

module keyword https (2)

Sticky modules and module purge

• On some systems, you will be taught to avoid module purge (which
unloads all modules)

• Sticky modules are modules that are not unloaded by module purge, but
reloaded.
• They can be force-unloaded with module --force purge and
module --force unload

• Used on LUMI for the software stacks and modules that set the display style
of the modules
• But keep in mind that the modules are reloaded which can have side effects

module av

module av (2)

module av (3)

module av (4)

module av (5)

module av (6)

Changing how the module list is displayed

• You may have noticed that you don’t see directories in the module view but
descriptive texts

• This can be changed by loading a module
• ModuleLabel/label : The default view
• ModuleLabel/PEhierarchy : Descriptive texts and unfolded PE hierarchy
• ModuleLabel/system : Module directories

• Turn colour on or off using ModuleColour/on or ModuleColour/off
• Show or hide the module extensions with ModuleExtensions/show or
ModuleExtensions/hide
• Show some hidden modules with ModulePowerUser/LUMI

• This will also show undocumented/unsupported modules!

• More customisation possible via LMOD environment variables

Getting help

• module help is the command to get help information for available
modules
• Without further arguments: help about the module command
• We do try to add a bit more help information about what a module provides

to the modules than default EasyBuild or Spack installations tend to do.

• Examples (require loading CrayEnv):
module help cray-mpich
module help cray-python/3.10.10
module help buildtools/23.09
• module whatis can produce a short description
module whatis Subversion
module whatis Subversion/1.14.2

A note on caching

• Large module system = lots of small module files = Lustre not very happy
• But Lmod does use caches by default
• Currently no system cache, only a user cache in $HOME/.cache/lmod

• Cache refreshed automatically every 24 hours
• You’ll notice when the spider or available commands are slow
• But you may need to clean the cache after creating a new module as on

LUMI Lmod does not always detect the change

• Also clear the cache if you notice very strange answers from module
spider.
• Looks like the HPE Cray PE sometimes causes cache problems

A note on other commands

• module load, module unload, module list are fairly standard
commands and the basic operation is the same in all module systems
• Note that module list may also show inactive modules: Modules that

were loaded at some point but got unloaded when a module closer to the
root of the hierarchy got unloaded

• module swap:
• Equivalent to an unload followed by a load

• For two modules of the same family module swap is more efficient as Lmod
does not first have to discover the family conflict

• But it is not essential as LUMI has autoswap enabled

Questions?

