
Jø̈rn Dietze (UiT/LUST)
8.2.2024

Introduction to Lustre and Best Practices

Lustre

LUMI has a highly parallel load
● Large amounts of data
● Compute and login nodes need access to storage
● Often multiple nodes require simultaneous read or

write access to same data
● Danger of data corruption

Parallel file system to handle load

Lustre consists of 3 major functional units

Login nodes
LUMI-C
LUMI-G

What steps happen when a file is accessed?
Client e.g. compute node wants read file

1. Client queries Metadata Server (MDS) for file

2. MDS returns location and layout

3. Client uses striping information to determine which Object
Storage Target (OST) has which part of the file

4. Client requests file content from OSTs via Object Storage
Server (OSS)

5. Data integrity it checked by client with checksums from OST

Lustre consists of 3 major functional units

Login nodes
LUMI-C
LUMI-G

Files are spread across multiple OSTs

Striping behavior can be adapted
Different tools to setting and displaying stripe properties
● lfs setstripe Set striping properties of a directory

or new file
● lfs getstripe Return information on current

striping settings
● lfs df -h Show disk usage of file system

Striping count and size are most important
Count: Number of OSTs to stripe over (0 default, -1 all)

● # files > # OSTs —> Set stripe_count = 1
Reduce lustre contention and OST file locking and gain performance

● # files == 1 —> Set stripe_count = #OSTs or a number where your
performance plateaus

Assuming you have more than 1 I/O client
● # files < # OSTs —> Select stripe_count so that you use all OSTs

For example you write 8 files at the same time and have 32 OSTs,
then select stripe_count=4

Try to use all OSTs

Striping count and size are most important
Size: Bytes on each OST (0 filesystem default)
● No effect if stripe count is 1
● For large files

● smallest recommended stripe size is 512 KB.
● good stripe size is between 1 MB and 4 MB in most situations.
● maximum stripe size is 4 GB but you should only use this

value for very large files

Striping has to be set before file is created
jodietze@uan01:~> ls lfs.test

ls: cannot access 'lfs.test': No such file or
directory

jodietze@uan01:~> lfs setstripe -c 4 -S 2m lfs.test

jodietze@uan01:~> lfs getstripe lfs.test

lfs.test

lmm_stripe_count: 4

lmm_stripe_size: 2097152

lmm_pattern: raid0

lmm_layout_gen: 0

lmm_stripe_offset: 10

obdidx objid objid group

 10 110905348 0x69c4804 0

 12 110883990 0x69bf496 0

 14 110883882 0x69bf42a 0

 16 110888976 0x69c0810 0

Striping has to be set before file is created
jodietze@uan01:~> lfs setstripe -c 1 -S 1m lfs.test

lfs setstripe: setstripe error for 'lfs.test': stripe already set

Lustre is shared and finite
Metadata Storage Servers and Targets

● Are involved in many filesystem operations like creating, open,
closing files

● Also queried everytime file attributes are looked up (e.g. with
stat or ls -l)

● Are limited and can become bottleneck

For reading and writing OST are directly contacted

Some lustre performance tips
● Avoid stat() calls
● Open files read-only if that is the intention
● Read on rank-0 and broadcast instead of reading

small files from every task
● Avoid very large directories
● Avoid appending to a file from many nodes (clients)

Many small files can be problem
● Slowdowns can occur when many (small) files are being opened
● Usually not restricted by bandwidth or actual file access latency
● But MDS is being flooded with request for files
● Especially installations and compilations can create hundreds of

thousands of files
● Use archives or containers which are unpacked on compute node
● Special `lumi-container-wrapper` or `cotainr` for pip or

conda environments

Storage on LUMI

LUMI has two storage systems
LUMI-P

● Disk based
● 4 independ Lustre file systems with each 20 PB
● Aggregated 240 Gb/s bandwidth

LUMI-F
● Solid-state (flash) based
● 8.5 PB
● 1740 GB/s bandwidth

LUMI has four storage areas

Area Path Quota Files Rention time

User home /users/<username> 20 GB 100k User lifetime
Project persistent /project/<project> 50 GB 100k Proj lifetime
Project scratch /scratch/<project> 50 TB 2000k 90 days
Project flash /flash/<project> 2 TB 100k 30 days

+ LUMI-O (object storage)

Be aware: No backups

Object Storage – LUMI-O
30 PB object based storage
● Meant fo storing, sharing, and staging of data
● Organised as buckets instead of file hierarchy
● Each bucket contains flat hierarchy of objects
● Metadata specifies access rights
● Possible to publish data via public URL

Weird errors → check your quota
Use `lumi-workspaces` to
● check for quota (file and size)
● see on which file system your home and project is located

Weird errors → check your quota
jodietze@uan02:~> lumi-workspaces

Quota for your projects:

Disk area Capacity(used/max) Files(used/max)
--
Personal home folder
Home folder is hosted on lustrep2

/users/jodietze 1,7G/22G 43K/100K
--
Project: project_465000005
Project is hosted on lustrep2

/projappl/project_465000005 4,1K/54G 1/100K
/scratch/project_465000005 3,8G/55T 72/2,0M
/flash/project_465000005 4,1K/2,2T 1/1,0M
--

Temporary storage /tmp
● Compute nodes don’t have local disks/flash
● /tmp resides in memory
● Consumes space of your memory allocation
● Remember to allocate enough memory if

you want to use /tmp

Conclusion
● Lustre achieves high performance through parallelism

– Lots of bandwidth if used correctly
– Metadata server can be a bottleneck
– Striping options to optimize performance
– Avoid large number of files

● LUMI has 4 storage areas with different quotas and lifetimes
● Object storage LUMI-O
● Check your quota with `lumi-workspaces`

www.lumi-supercomputer.eu
contact@lumi-supercomputer.eu

Follow us

Twitter: @LUMIhpc

LinkedIn: LUMI supercomputer

YouTube: LUMI supercomputer

Jø̈rn Dietze
LUMI User Support Team

jorn.dietze@uit.no

https://www.lumi-supercomputer.eu/
mailto:contact@lumi-supercomputer.eu
https://twitter.com/LUMIhpc
https://twitter.com/LUMIhpc
https://twitter.com/LUMIhpc
https://www.linkedin.com/company/lumi-supercomputer
https://www.youtube.com/channel/UCb31KOJ6Wqu0sRpIRi_k8Mw

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

