
LUMI Software Stacks Kurt Lust
LUMI User Support Team (LUST)

University of Antwerp

February 2024

Software stack design considerations

• Very leading edge and inhomogeneous machine (new interconnect, new GPU architecture with
an immature software ecosystem, some NVIDIA GPUs for visualisation, a mix of zen2 and zen3)
• Need to remain agile

• Users that come to LUMI from 12 different channels (not counting subchannels), with different
expectations

• Small central support team considering the expected number of projects and users and the
tasks the support team has
• But contributions from local support teams

• Cray Programming Environment is a key part of our system

• Users really want more and more a customised environment

• Everybody wants a central stack as long as their software is in there but not much more
• Look at the success of conda, Python virtual environments, containers, …

The LUMI solution

• Software organised in extensible software stacks based on a particular release of the PE
• Many base libraries and some packages already pre-installed
• Easy way to install additional packages in project space

• Modules managed by Lmod
• More powerful than the (old) Modules Environment
• Powerful features to search for modules

• EasyBuild is our primary tool for software installations
• But uses HPE Cray specific toolchains
• Offer a library of installation recipes
• User installations integrate seamlessly with the central stack
• We do have a Spack setup but don’t do development in Spack ourselves

Policies

• Bring-your-own-license except for a selection of tools that are useful to a larger
community
• One downside of the distributed user management is that we do not even have the

information needed to determine if a particular userid can use a particular software license

• Even for software on the system, users remain responsible for checking the license!

• LUST tries to help with installations of recent software, but porting or bug fixing is
not our work
• Not all Linux or even supercomputer software will work on LUMI

• We’re too small a team to do all software installations, so don’t count on us to do all the
work. The diversity in requested packages is just too high.

• Conda, (large) Python installations need to go in containers
• We offer lumi-container-wrapper and cotainr to do that

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/l/lumi-container-wrapper/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/c/cotainr/

Organisation: Software stacks

• CrayEnv: Cray environment with some additional tools pushed in through
EasyBuild

• LUMI stacks, each one corresponding to a particular release of the PE
• Work with the Cray PE modules, but accessed through a replacement for the

PrgEnv-* modules
• Tuned versions for the 3 4 types of hardware: zen2 (login, large memory nodes),

zen3 (LUMI-C compute nodes), zen2 + NVIDIA GPU (visualisation partition), zen3 +
MI250X (LUMI-G GPU partition)

• spack: Install software with Spack using compilers from the PE
• Offered as-is for users who know Spack, but we do not do development in Spack

• Far future: Stack based on common EB foss toolchain as-is for LUMI-C

Accessing the Cray PE on LUMI
3 different ways

• Very bare environment available directly after login
• What you can expect on a typical Cray system
• Few tools as only the base OS image is available
• User fully responsible for managing the target modules

• CrayEnv
• “Enriched” Cray PE environment
• Takes care of managing the target modules: (re)loading CrayEnv will reload an

optimal set for the node you’re on
• Some additional tools, e.g., newer build tools (offered here and not in the bare

environment as we need to avoid conflicts with other software stacks)
• Otherwise used in the way discussed in this course

Accessing the Cray PE on LUMI
3 different ways

• LUMI software stack
• Each stack based on a particular release of the HPE Cray PE

• Other modules are accessible but hidden from the default view

• Better not to use the PrgEnv modules but the EasyBuild LUMI toolchains

• Environment in which we install most software (mostly with EasyBuild)

HPE Cray PE LUMI toolchain

PrgEnv-cray cpeCray Cray Compiling Environment

PrgEnv-gnu cpeGNU GNU C/C++ and Fortran

PrgEnv-aocc cpeAOCC AMD CPU compilers (not on LUMI-G)

PrgEnv-amd cpeAMD AMD ROCm GPU compilers (LUMI-G only)

Accessing the Cray PE on LUMI
The LUMI software stack

• The LUMI software stack uses two levels of modules
• LUMI/22.08, LUMI/22.12, LUMI/23.03, LUMI/23.09: Versions of the LUMI stack
• partition/L, partition/C, partition/G (and future partition/D): To select software

optimised for the respective LUMI partition
• partition/L is for both the login nodes and the large memory nodes (4TB)

• Hidden partition/common for software that is available everywhere, but be careful
using it for your own installs
• When (re)loaded, the LUMI module will load the best matching partition module.
• So be careful in job scripts: When your job starts, the environment will be that of

the login nodes, but if you trigger a reload of the LUMI module it will be that of the
compute node!

Installing software on HPC systems

• Software on an HPC system is rarely installed from RPM
• Generic RPMs often not optimised for the specific CPU
• Generic RPMs may not work with the specific LUMI environment (SlingShot

interconnect, kernel modules, resource manager)
• Multi-user system so usually no “one version fits all”
• Need a small system image as nodes are diskless

• Spack and EasyBuild are the two most popular HPC-specific software build
and installation frameworks
• Usually install from sources to adapt the software to the underlying hardware and OS
• Installation instructions in a way that can be communicated and executed easily
• Make software available via modules
• Dependency handling compatible with modules

Extending the LUMI stack with EasyBuild

• Fully integrated in the LUMI software stack

• Load the LUMI module and modules should appear in your module view
• EasyBuild-user module to install packages in your user space

• Will use existing modules for dependencies if those are already on the system or
in your personal/project stack

• EasyBuild built-in easyconfigs do not work well on LUMI, not even on LUMI-C

• GNU-based toolchains: Would give problems with MPI

• Intel-based toolchains: Intel compilers and AMD CPUs are a problematic cocktail

• Library of recipes that we made in the LUMI-EasyBuild-contrib GitHub repository

• EasyBuild-user will find a copy on the system or in your installation

• List of recipes in the LUMI Software Library

https://github.com/Lumi-supercomputer/LUMI-EasyBuild-contrib/tree/main/easybuild/easyconfigs
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

EasyBuild recipes - easyconfigs

• Build recipe for an individual package = module
• Relies on either a generic or a specific installation process provided by an

easyblock

• Steps
• Downloading sources and patches
• Typical configure – build – (test) – install process
• Extensions mechanism for perl/python/R packages
• Some simple checks
• Creation of the module

• All have several parameters in the easyconfig file

The toolchain concept

• A set of compiler, MPI implementation and basic math libraries
• Simplified concept on LUMI as there is no hierarchy as on some other

EasyBuild systems

• These are the cpeCray, cpeGNU, cpeAOCC and cpeAMD modules
mentioned before!

HPE Cray PE LUMI toolchain

PrgEnv-cray cpeCray Cray Compiling Environment

PrgEnv-gnu cpeGNU GNU C/C++ and Fortran

PrgEnv-aocc cpeAOCC AMD CPU compilers (not on LUMI-G)

PrgEnv-amd cpeAMD AMD ROCm GPU compilers (LUMI-G only)

The toolchain concept (2)

• Special toolchain: SYSTEM to use the system compiler
• Does not fully function in the same way as the other toolchains when it

comes to dependency handling
• Used on LUMI for CrayEnv and some packages with few dependencies

• It is not possible to load packages from different cpe toolchains at the
same time
• EasyBuild restriction, because mixing libraries compiled with different

compilers does not always work

• Packages compiled with one cpe toolchain can be loaded together with
packages compiled with the SYSTEM toolchain
• But we do avoid mixing them when linking

easyconfig names and module names

GROMACS-2022.5-cpeGNU-23.09-PLUMED-2.9.0-noPython-CPU.eb

Name of the package

Version of the package

Toolchain name and version (missing for SYSTEM)

Additional information

Module: GROMACS/2022.5-cpeGNU-23.09-PLUMED-2.9.0-noPython-CPU

Installing
Step 1: Where to install

• Default location is $HOME/EasyBuild

• But better is to install in your project directory for the whole project
• export EBU_USER_PREFIX=/project/project_465000000/EasyBuild
• Set this before loading the LUMI module

• All users of the software tree have to set this environment variable to use the
software tree

Installing
Step 2: Configure the environment

• Load the modules for the LUMI software stack and partition that you
want to use. E.g.,
module load LUMI/23.09 partition/C

• Load the EasyBuild-user module to make EasyBuild available and to
configure it for installing software in the chosen stack and partition:
module load EasyBuild-user

• In many cases, cross-compilation is possible by loading a different
partition module than the one auto-loaded by LUMI
• Though cross-compilation is currently problematic for GPU code

module load LUMI/23.09 partition/C
module load EasyBuild-user

Installing
Step 3: Install the software

• Let’s, e.g., install GROMACS

• Search if GROMACS build recipes are available:
• Search the LUMI Software Library that lists all available software through EasyBuild.

• Or on the command line:
eb --search GROMACS
eb –S GROMACS

• Let’s take GROMACS-2022.5-cpeGNU-23.09-PLUMED-2.9.0-noPython-CPU.eb:
eb GROMACS-2022.5-cpeGNU-23.09-PLUMED-2.9.0-noPython-CPU.eb -D
eb GROMACS-2022.5-cpeGNU-23.09-PLUMED-2.9.0-noPython-CPU.eb -r

• Now the module should be available
module avail GROMACS

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

eb --search GROMACS | less

eb -S GROMACS | less

eb GROMACS-2022.5-cpeGNU-23.09-PLUMED-2.9.0-noPython-CPU.eb -D

eb GROMACS-2022.5-cpeGNU-23.09-PLUMED-2.9.0-noPython-CPU.eb -D (2)

eb GROMACS-2022.5-cpeGNU-23.09-PLUMED-2.9.0-noPython-CPU.eb -r

eb GROMACS-2022.5-cpeGNU-23.09-PLUMED-2.9.0-noPython-CPU.eb -r (2)

eb GROMACS-2022.5-cpeGNU-23.09-PLUMED-2.9.0-noPython-CPU.eb -r(3)

eb GROMACS-2022.5-cpeGNU-23.09-PLUMED-2.9.0-noPython-CPU.eb –r (4)

eb GROMACS-2022.5-cpeGNU-23.09-PLUMED-2.9.0-noPython-CPU.eb -r (5)

eb GROMACS-2022.5-cpeGNU-23.09-PLUMED-2.9.0-noPython-CPU.eb -r (6)

Installing
Step 3: Install the software - Note

• Installing this way is 100% equivalent to an installation in the central
software tree. The application is compiled in exactly the same way as we
would do and served from the same file systems.
• And you are in control of updates.

• Note: EasyBuild clears the Lmod user cache so in principle newly
installed modules should show up without problems after installation.
• We’ve seen rare cases where internal Lmod data structures were corrupt and

logging out and in again was needed.

• To manually remove the cache: Remove $HOME/.cache/lmod
rm -rf $HOME/.cache/lmod

More advanced work

• You can also install some EasyBuild recipes that you got from support
and are in the current directory (preferably one without subdirectories):
eb my_recipe.eb -r .
• Note the dot after the –r to tell EasyBuild to also look for dependencies in

the current directory (and its subdirectories)

• In some cases you will have to download the sources by hand, e.g., for
VASP, which is then at the same time a way for us to ensure that you
have a license for VASP. E.g.,
• eb --search VASP
• Then from the directory with the VASP sources:
eb VASP-6.4.1-cpeGNU-22.12-build01.eb -r .

More advanced work (2):
Repositories

• It is possible to have your own clone of the LUMI-EasyBuild-contrib repo in your
$EBU_USER_PREFIX subdirectory if you want the latest and greatest before it is
in the centrally maintained repository
• cd $EBU_USER_PREFIX
git clone https://github.com/Lumi-supercomputer/LUMI-EasyBuild-
contrib.git

• It is also possible to maintain your own repo
• The directory should be $EBU_USER_PREFIX/UserRepo (but of course on

GitHub the repository can have a different name)
• Structure should be compatible with EasyBuild: easyconfig files go in
$EBU_USER_PREFIX/UserRepo/easybuild/easyconfigs

More advanced work (3): Reproducibility

• EasyBuild will keep a copy of the sources in $EBU_USER_PREFIX/sources

• EasyBuild also keeps copies of all installed easyconfig files in two locations:

• In $EBU_USER_PREFIX/ebrepo_files
• And note that EasyBuild will use this version if you try to reinstall and did

not delete this version first!

• This ensures that the information that EasyBuild has about the installed
application is compatible with what’s in the module files

• With the installed software (in $EBU_USER_PREFIX/SW) in a subdirectory
called easybuild
This is meant to have all information about how EasyBuild installed the
application and to help in reproducing

EasyBuild tips&tricks

• Updating version: Often some trivial changes in the EasyConfig (.eb) file
• Checksums may be annoying: Use --ignore-checksums with the eb

command

• Updating to a new toolchain:
• Be careful, it is more than changing one number
• Versions of preinstalled dependencies should be changed and EasyConfig files of

other dependencies also checked

• LUMI Software Library at lumi-supercomputer.github.io/LUMI-EasyBuild-
docs
• For most packages, pointers to the license
• User documentation gives info about the use of the package, or restrictions
• Technical documentation aimed at users who want more information about how

we build the package

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/
https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

EasyBuild training for advanced users and
developers
• EasyBuild web site: easybuild.io
• Generic EasyBuild training materials on tutorial.easybuild.io.
• Training for CSC and local support organisations: Most up-to-date

version of the training materials on
lumi-supercomputer.github.io/easybuild-tutorial.

https://easybuild.io/
https://tutorial.easybuild.io/
https://lumi-supercomputer.github.io/easybuild-tutorial/

