
Modules on LUMI Kurt Lust
LUMI User Support Team (LUST)

University of Antwerp

February 2024

Module environments

• Modules are used on HPC systems to enable users to create custom
environments and select between multiple versions of applications
• And applications on HPC systems are installed in non-standard places

• 3 systems in use
• Original module tool written in C with modules in Tcl, development halted

• New implementation in Tcl with many new features, developed at INRIA

• Not supported by HPE Cray

• Lmod, an implementation in Lua with native module files in Lua but support
for most Tcl module files

• We chose Lmod for LUMI

Exploring modules with Lmod

• Contrary to some other module systems, not all modules are immediately available
for loading
• Installed modules: All modules on the system that can be loaded one way or another

• Available modules: Can be loaded without first loading another module

• Examples in the HPE Cray PE:

• cray-mpich requires a compiler module and network target module first

• Many of the performance monitoring tools require perftools-base first

• cray-fftw only becomes available when a processor target module is loaded

• Tools

• module avail searches in the available modules

• module spider and module keyword search in the installed modules

Benefits of a hierarchy

• When well designed, you get some protection from loading modules that
do not work together well
• Only partially implemented on LUMI

• When “swapping” a module that makes other modules available with a
different one, Lmod will try to look for equivalent modules in the new
hierarchy
• Example: Try module load PrgEnv-aocc in the default login environment

and see what happens

module load PrgEnv-aocc

Module names and families

• In Lmod you cannot have two modules with the same name loaded
together
• On LUMI, when loading a new module the other one with the same name

will be automatically unloaded
• Automatic protection from conflicts

• Extension: family concept: No two modules of the same family can be
loaded together
• E.g., make compilers member of the family “compiler”
• On LUMI, the conflicting module of the same family will be unloaded

automatically

Extensions

• It would not make sense to have a separate module for each of the
hundreds of R packages or tens of Python packages a software stack may
contain.
• Would actually also create a performance problem due to excess metadata

access and long PATH variables
• Bundle related packages in a single module

• Lmod solution: A module can define a list of extensions, basically other
packages provided by the module.
• And the regular commands can be used to search for these
• Unfortunately not used in the HPE Cray PE cray-python and cray-R modules

module spider

• module spider : Long list of all installed software with short description
• Will also look into modules for “extensions” and show those also, marked with

an “E”

• module spider FFTW : Look for the FFTW libraries on the system

• module spider cray-fftw/3.3.10.5: Look for this specific version
• But this immediately shows the problems with the HPE Cray PE

• Some of the lines don’t make much sense (see later)

• Some options are missing also

module spider (command) (1)

module spider (command) (2)

module spider (command) (3)

module spider FFTW

module spider cray-fftw/3.3.10.5

module spider cray-fftw/3.3.10.5 (2)

module spider for a regular package

• module spider gnuplot : Shows all versions of gnuplot on the system

• module spider gnuplot/5.4.8-cpeGNU-23.09 : Shows help
information for the specific module, including what should be done to
make the module available

module spider gnuplot

module spider gnuplot (2)

module spider gnuplot/5.4.8-cpeGNU-23.09

module spider gnuplot/ 5.4.8-cpeGNU-23.09 (2)

module spider for extensions

• No example in the default Cray modules, so examples come from the LUMI
software stacks

• module spider CMake
• module spider CMake/3.27.7 : Will tell you which module contains

this version of CMake and how to load it

module spider CMake

module spider CMake/3.27.7

module keyword

• Searches in the module short description for the keyword.
• E.g., try
module keyword https

• We do try to put enough information in the modules to make this a
suitable additional way to discover software that is already installed on
the system

module keyword https

module keyword https (2)

Sticky modules and module purge

• On some systems, you will be taught to avoid module purge (which
unloads all modules)

• Sticky modules are modules that are not unloaded by module purge, but
reloaded.
• They can be force-unloaded with module --force purge and
module --force unload

• Used on LUMI for the software stacks and modules that set the display style
of the modules
• But keep in mind that the modules are reloaded which could have side-effects,

e.g., if you have manually overwritten an environment variable set by a module

module av

module av (2)

module av (3)

module av (4)

module av (5)

module av (6)

module av (7)

Changing how the module list is displayed

• You may have noticed that you don’t see directories in the module view but
descriptive texts

• This can be changed by loading a module
• ModuleLabel/label : The default view
• ModuleLabel/PEhierarchy : Descriptive texts and unfolded PE hierarchy
• ModuleLabel/system : Module directories

• Turn colour on or off using ModuleColour/on or ModuleColour/off
• Show or hide the module extensions with ModuleExtensions/show or
ModuleExtensions/hide
• Show some hidden modules with ModulePowerUser/LUMI

• This will also show undocumented/unsupported modules!

• More customisation possible via LMOD environment variables

Getting help

• module help is the command to get help information for available
modules
• Without further arguments: help about the module command
• We do try to add a bit more help information about what a module provides

to the modules than default EasyBuild or Spack installations tend to do.

• Examples:
module help cray-mpich
module help cray-python/3.10.10
module help buildtools/23.09
• module whatis can produce a short description
module whatis Subversion
module whatis Subversion/1.14.2

A note on caching

• Large module system = lots of small module files = Lustre not very happy
• But Lmod does use caches by default
• Currently no system cache, only a user cache in $HOME/.cache/lmod

• Cache refreshed automatically every 24 hours
• You’ll notice when the spider or available commands are slow
• But you may need to clean the cache after installing new software as on

LUMI Lmod does not always detect the change

• Also clear the cache if you notice very strange answers from module
spider.
• Looks like the HPE Cray PE sometimes causes cache problems

A note on other commands

• module load, module unload, module list are fairly standard
commands and the basic operation is the same in all module systems
• Note that module list may also show inactive modules: Modules that

were loaded at some point but got unloaded when a module closer to the
root of the hierarchy got unloaded

• module swap:
• Equivalent to an unload followed by a load

• For two modules of the same family module swap is more efficient as Lmod
does not first have to discover the family conflict

• And it is not essential as LUMI has autoswap enabled

