
Running Jobs
on LUMI 1

Maciej Szpindler

LUMI User Support Team

Cyfronet

21 September 2023

Running Jobs

• Slurm intro

• Slurm partitions

• Interactive and batch jobs

• Job arrays

• Binding tasks to resources

• Running containers

• Hands-on excercises

Slurm intro

3

• Slurm is an open source cluster management and job scheduling system
which provides:
• exclusive and/or non-exclusive allocation of resources (compute nodes)

• infrastructure for starting, executing, and monitoring jobs

• fair share queue of pending jobs

Slurm version

4

Note Slurm version on LUMI is 22.05.8 (as of September 2023). Default
documentation on the web is for versions 23.02. Please use specific version:

https://slurm.schedmd.com/archive/slurm-22.05.8/

https://slurm.schedmd.com/archive/slurm-22.05.8/

Slurm partition

5

• Slurm partitions are groups of nodes with similar resources or associated limits

• Logical concept to manage access to LUMI HW partitions (GPU, CPU nodes)

• List of available partitions
sinfo –s

• Partition details
scontrol show partition <partition-name>

• Different context of partition: hardware (name), access (Slurm directive), target architecture
(environment module)

Available partitions

6

Partition name Max walltime Max jobs Max resources/job HW partition

Slurm partitions allocatable by node (exclusively)

standard-g 2 days 210 (200 running) 1024 nodes LUMI-G

standard 2 days 120 (100 running) 512 nodes LUMI-C

Slurm partitions allocatable by resources (shared)

small-g 3 days 210 (200 running) 4 nodes LUMI-G

small 3 days 220 (200 running) 4 nodes LUMI-C

dev-g 3hours 2 (1 running) 16 nodes LUMI-G

debug 30 minutes 2 (1 running) 4 nodes LUMI-C

largemem 1 day 30 (20 running) 1 nodes LUMI-D

Project account

7

• Running jobs requires a project account
• It is created when you are granted project allocation

• Your project account ID is required to submit a job

• Account ID has a name project_xxxxxxxxx (9 digits)

• You can use the lumi-allocations command to list your projects
• Alternative is to use the groups command to see account IDs

• Your allocation portal should also show your project's account IDs

Data updated: 2023-09-19 11:31:15

Project | CPU (used/allocated)| GPU (used/allocated)| Storage (used/allocated)

--

project_465000688 | 0/10000000 (0.0%) core/hours| 0/1000 (0.0%) gpu/hours| 0/10 (0.0%) TB/hours

Allocation budget

8

• Do not use sreport

• It will show you usage with different metrics than actual billing units

• It creates unnecessary load on the Slurm controller

Interactive jobs

9

• Using salloc
• creates pool of resources reserved for your interactive execution (tasks)

• the command will start a new shell on the login node

• you can start parallel execution on the allocated nodes with srun

• to obtain a shell on the first allocated compute node you can use srun --pty

• the allocation can be terminated by exiting the shell with exit

~> salloc --nodes=2 --account=<project_id> --partition=<partition_name> --time=15

salloc: Granted job allocation 123456

salloc: Waiting for resource configuration

~> srun --ntasks=32 --cpus-per-task=8 ./mpi_openmp_application

~> exit

Interactive jobs

10

• Using srun directly (single job step)
• You can execute single parallel task with srun command

• To start a shell on the first allocated node in a specific job/allocation use

srun --interactive --pty --jobid=<jobid> $SHELL

• The -w nid00XXXXoption selects a specific compute node

srun --interactive --pty --jobid=<jobid> -w nid002217 …

• Use --overlap option to share resources already used by your other
job step (task)

~> srun --interactive --pty --jobid=<jobid> top

Job launcher

11

• srun is the only parallel launcher on LUMI
• there is no mpirun nor mpiexec commands

• returns the highest exit code of all tasks or the highest signal

Batch jobs

12

• Batch jobs are submitted with sbatch job.sh command
• File job.sh is your job script

• Job script is regular shell script with #SBATCH directives and execute command(s)

• You can use Slurm options with directives , from the command line or via environmental variables

• sbatch exits immediately after the script is successfully transferred to the Slurm
controller and assigned a Slurm job ID

• Slurm runs a single copy of the batch script on the first compute node in the set
of allocated nodes

• Both standard output and error are directed to a file slurm-<job_id>.out
by default

Batch job script

13

• Remember to include the sheebang in the first line of your job script

• #!/bin/bash is recommended

• Skipping the sheebang line or using fancy interpreters may result in module failures

• Directive line is #SBATCH followed by sbatch option and value

• Command line options overrides any environment variables and environment

variables overrides any options set in a batch job script

• You can enable e-mail notifications in the job script

• You can define dependencies between batch jobs

How to list my jobs

14

• squeue command shows all current jobs (running and pending)
• --meoption alias shows only jobs owned by you

• --time Set a limit on the total run time
of the job allocation

• --account Charge resources used by
this job to specified project

• --partition Request a specific
partition for the resource allocation

• --job-name Specify a name for the job
allocation

• --mail-user Used to specify the email
that should receive notification

• --mail-type When to send an
email: BEGIN, END, FAIL, ALL

• --nodes Number of nodes to be allocated

• --ntasks Maximum number of tasks (MPI ranks)

• --ntasks-per-node Number of tasks per node

• --cpus-per-task Number of cores per tasks

• --cpus-per-gpu Number of CPUs per allocated
GPU

• --gpus Total number of GPUs to be allocated for
the job

• --gpus-per-node Number of GPUs per node

• --gpus-per-task Number of GPUs per task

• --mem Set the memory per node

• --mem-per-cpu Memory per allocated CPU cores

• --mem-per-gpu Memory per allocated GPU
15

Sbatch options

Other Slurm options

16

• --exclusive the job is allocated all CPUs and GRES on all nodes in the allocation, but is
only allocated as much memory as it requested

• --mem=0 requests all the memory on a node (be careful, "all" but also "any")

• --export propagates environment variables from the submission environment to the
launched application, ALL by default

• --time accepts time formats "minutes", "minutes:seconds", "hours:minutes:seconds",
"days-hours", "days-hours:minutes" and "days-hours:minutes:seconds"

• --reservation=<reservation_names> allocates resources for the job from the
named reservation

• --dependency=<type:job_id[:job_id]> defines the condition that the job with
ID job_id must fulfil before the job which depends on it can start; type includes after,
afterany, afterok, afternotok

Job vs step allocations

17

• Job allocation is the set of resources created with sbatch or salloc

• Step allocation is the srun (or other serial) command executed within an existing
job allocation

• Step allocations usually inherit job options but can overwrite them (with
possibly slightly different meaning), e.g.
• --exclusive option (prevents other jobs from using the same node/dedicates

separate cpus to multiple job steps in a single job)

• --cpus-per-task option (set steps' specific cpu binding)

Example

18

~> srun --partition=small-g --exclusive --nodes=1 --tasks=1 --gpus-per-node=1 --cpus-per-task=6 --time=5 \
gpu_check -l

~> salloc --partition=small-g --exclusive --nodes=1 --tasks=1 --gpus-per-node=1 --cpus-per-task=6 --time=5

~> srun gpu_check –l

MPI 000 - OMP 000 - HWT 001 (CCD0) - Node nid005066 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID d1(GCD4/CCD0)

MPI 000 - OMP 001 - HWT 002 (CCD0) - Node nid005066 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID d1(GCD4/CCD0)

MPI 000 - OMP 002 - HWT 003 (CCD0) - Node nid005066 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID d1(GCD4/CCD0)

MPI 000 - OMP 003 - HWT 004 (CCD0) - Node nid005066 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID d1(GCD4/CCD0)

MPI 000 - OMP 004 - HWT 005 (CCD0) - Node nid005066 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID d1(GCD4/CCD0)

MPI 000 - OMP 005 - HWT 006 (CCD0) - Node nid005066 - RT_GPU_ID 0 - GPU_ID 0 - Bus_ID d1(GCD4/CCD0)

Here your task runs on a single CCD and closest GPU but a job has entire

job exclusively allocated

Single step allocation may result with the same binding but if you are

lucky; it depends on other jobs already sharing the node!

Automatic requeuing

19

• LUMI is using Slurm automatic requeuing of jobs upon node failure

• your job is automatically resubmitted if any of it's nodes allocated fails

• identical job ID is used and the previous output truncated

• Disable automatic requeuing with --no-requeue option

• Avoid your output file being truncated with --open-mode=appendoption

• Use the value of the SLURM_RESTART_COUNT variable

• The value of this variable is 0 for first time the job is run

• If the job has been restarted then the value is incremented

Generic Job script

20

#!/bin/bash -l

#SBATCH --job-name=examplejob # Job name

#SBATCH --output=examplejob.o%j # Name of stdout output file

#SBATCH --error=examplejob.e%j # Name of stderr error file

#SBATCH --partition=standard # Partition name, mandatory for job to be scheduled

#SBATCH --nodes=10 # Total number of nodes

#SBATCH --ntasks=640 # Total number of mpi tasks

#SBATCH --mem=100G # Allocate 100 gigabytes memory per node

#SBATCH --time=1-12:00:00 # Run time (d-hh:mm:ss)

#SBATCH --mail-type=all # Send email at begin and end of job

#SBATCH --account=project_<id> # Project for billing, mandatory for job to be scheduled

#SBATCH --mail-user=username@domain.com

Any other commands must follow the #SBATCH directives

Launch MPI code srun

srun ./your_application # Use srun instead of mpirun or mpiexec

Examples

21

~> sbatch --account=dummy-invalid-project job.sh

sbatch: error: Batch job submission failed: Invalid account or

account/partition combination specified

~> sbatch job.sh

sbatch: error: Batch job submission failed: No partition
specified or system default partition

#SBATCH --ntasks-per-node=8

#SBATCH --cpus-per-task=8

~> sbatch job.sh

sbatch: error: Batch job submission failed: Requested node

configuration is not available

Missing or
wrong

project id

Missing or
wrong

project id

Not all 64
cores of a
node are

available to
users' jobs

Job scripts and modules

22

• You need to load modules to set specific environment for your job
• Otherwise it is propagated from your current shell

• Remember the sheebang line

• With the LUMI software stack
• Use partition modules partition/C/G/L to set target architecture for the

application or the library

• Do not confuse with Slurm--partition selection (access) option

•With CrayEnv (native) software environment
• Use craype-* module family to set target architecture

• Hardcoding modules in the bashrc profile may cause troubles

Job arrays

23

• Slurm job array submits a given number of independent jobs

• Use --arrayoption to define the number of array tasks

• The SLURM_ARRAY_TASK_IDenvironment variable identifies each array task uniquely

• Job arrays use IDs of the form <jobid>_<arrayindex>
• pending array task are shown as one entry with it's IDs combined
• running ones are shown as individual jobs

• Job array is subject to limits same as single job (see partition's limits)

#!/bin/bash

#SBATCH --array=1-16

#SBATCH --output=array_%A_%a.out

#SBATCH --error=array_%A_%a.err

#SBATCH --time=01:00:00

#SBATCH --ntasks=1

#SBATCH --mem=4G

Print the task index. echo "My SLURM_ARRAY_TASK_ID: " $SLURM_ARRAY_TASK_ID

srun ./myapp --input input_data_${SLURM_ARRAY_TASK_ID}.inp

• Compute nodes use Non-Uniform Memory Access (NUMA) design
• 2 threads per core, 64 cores, 4 NUMA domains per socket

• 1 socket for LUMI-G nodes

• 2 sockets for LUMI-C nodes

• Memory in the local NUMA node can be accessed faster

• Slum can bind process or thread to a specific core

• For improved memory access performance

• It works only for exclusive node access,

• Default for the standard and standard-g partitions

Concept of socket, core and threads

24

Slurm tasks

25

• Task is a single application process executing as a part of job step
• Single step can execute multiple tasks (e.g. MPI application parallel processes)

• Each task can spawn its threads (with a hybrid MPI-OpenMP approach)

• For a job (step) with multiple tasks Slurm can
• Distribute tasks across nodes, sockets, cores and multi-threads

• Bind tasks to physical CPU cores or NUMA domains

• Bind tasks to GPUs

• Allocate multiple CPU cores for task's thread execution

Tasks distribution

26

• Slurm can use different policies to distribute tasks (MPI ranks, logical processes)
• --distribution=<dist> option
• <dist> can be subdivided in multiple levels for nodes, sockets and cores
• Requires exclusive access

• Node level
• block (default) distributes tasks to a node such that consecutive tasks share a node
• cyclic consecutive tasks are distributed over consecutive nodes (in a round-robin fashion)

• Socket level
• block consecutive tasks are distributed on the same socket
• cyclic (default) tasks are distributed in a round-robin fashion across sockets

• Core level
• inherits from second distribution method

• Combine distribution levels with semicolon, for instance --distribution=block:block

Multi-threading

27

• Hyperthreads

• --hint=nomultithread (default) Slurm option disables use of hyperthreads

• Hardware threads are visible as cores 64-127 (LUMI-G) 128-255 (LUMI-C)

• Software multi-threading

• OpenMP runtime controls thread affinity and pinning

• Display binding with OMP_DISPLAY_AFFINITY=TRUE environmental variable

• OMP_PLACES defines where to pin threads on, values threads, cores, sockets

• OMP_PROC_BIND defines how threads are mapped to the places

• spread distributes (spread) the threads as evenly as possible

• close binds threads close to the master thread

• master binds threads to the same place as the master thread

• false allows threads to be moved between places and disables thread affinity

Binding tasks to resources

28

• Requires exclusive access

• CPU binding (srun only) --cpu-bind=<bind>
• threads tasks are pinned to the logical threads

• cores tasks are pinned to the cores

• sockets tasks are pinned to the sockets

• map_cpu:<list> custom bindings of tasks with <list> a comma-separated list of CPUIDs

• mask_cpu:<list> custom bindings of tasks with <list> a comma-separated hexadecimal values of mask for cores

• GPU binding with --gpu-bind=<bind>
• closest binds each task to the closest GPU (can bind to multiple GPUs)

• map_gpu:<list> custom bindings of tasks with <list> a comma-separated list of GPUIDs

• mask_gpu:<list> custom bindings of tasks with <list> a comma-separated hexadecimal values of mask for GPUs

• Memory binding is also possible

Combining tasks and threads

29

• For a hybrid MPI+OpenMP jobs use --cpus-per-task option
• Allocates multiple cores per task (MPI rank)

• It still requires OMP_NUM_THREADS for explicit control

• NOTE: Beginning with 22.05, srun is not inheriting the --cpus-per-task value
requested by salloc or sbatch. On LUMI the behavior is patched but in some cases
still needs to be requested again with the call to srun or set with the
SRUN_CPUS_PER_TASK environment variable if desired for the task(s)

Multi GPU runs

30

• Automatic GPU assignment

• --gpus-per-node, --gpu-bind=closest

• May assign multiple GPUs to a single task

• Explicit GPU mapping

• --gpu-bind=map_gpu:<gpu_id_for_task_0>, <gpu_id_for_task_1>,...

• Using ROCm environment variable ROCR_VISIBLE_DEVICES

• Custom select_gpu wrapper script

• Caution with --gpus-per-task option, it can brake direct GPU communication

• GPU-aware MPI

• Turn on with MPICH_GPU_SUPPORT_ENABLED=1 MPI variable

• Allows to use device pointers (buffers)

• Map tasks to network interfaces with MPICH_OFI_NIC_POLICY=GPU

Example

31

See

https://docs.csc.fi/apps/gromacs/#example-batch-script-for-lumi-full-gpu-node

#!/bin/bash

#SBATCH --partition=standard-g

#SBATCH --account=<project>

#SBATCH --time=00:15:00

#SBATCH --nodes=1

#SBATCH --gpus-per-node=8

#SBATCH --ntasks-per-node=8

module load GROMACS/2023.2-cpeGNU-22.12-hipSYCL-GPU

export MPICH_GPU_SUPPORT_ENABLED=1

export GMX_ENABLE_DIRECT_GPU_COMM=1

export GMX_FORCE_GPU_AWARE_MPI=1

cat << EOF > select_gpu

#!/bin/bash

export ROCR_VISIBLE_DEVICES=\$SLURM_LOCALID

exec \$*

EOF

chmod +x ./select_gpu

export OMP_NUM_THREADS=7

CPU_BIND="mask_cpu:fe000000000000,fe00000000000000"

CPU_BIND="${CPU_BIND},fe0000,fe000000"

CPU_BIND="${CPU_BIND},fe,fe00"

CPU_BIND="${CPU_BIND},fe00000000,fe0000000000"

srun --cpu-bind=$CPU_BIND ./select_gpu gmx_mpi \

mdrun -nb gpu -bonded gpu -pme gpu -update gpu \

<gromacs_opts>

This gives you

proper task /
GPU

assignment

Enables GPU awarness with

MPI

Exclusive access allows

custom CPU/thread
binding

Enables GPU

acceleration within
application code

Note: the module from this
example does not provide

PME GPU decomposition. For
multi-node runs you should

consider a version with
HeFFTe library enabled.

https://docs.csc.fi/apps/gromacs/

Simultaneous job steps

32

• Slurm allows simultaneous job steps in a single allocation (job)

• Example from the srun manual

#!/bin/bash

srun -n4 prog1 &

srun -n3 prog2 &

srun -n1 prog3 &

srun -n1 prog4 &

wait

• Please be cautious when using such job construction

• We have seen serious issues with such jobs (should be fixed now)

• Simultaneous steps may help to fully utilize standard partition nodes with jobs that not scale

• You may consider combining --exclusive and --exact srun options to distribute step tasks within
the node

Low-noise mode

33

• LUMI-G nodes have the low-noise mode activated
• There are now eight cores reserved (#0, 8, 16, 24, 32, 40, 48 and 56)
• Only 56 cores are available to the jobs
• Jobs requesting 64 cores/node will never run
• This eliminates OS jitter and allows symmetric NUMA task bindings

• Default core bindings may be sub-optimal
• Thread team belonging to one task (MPI rank) may spread on multiple NUMA

domains
• Symmetric distribution requires 7 cores per GPU
• Use custom binding with CPU masks
• Works only with exclusive allocation (mind small-gand dev-gpartitions)

Understanding bitmasks

34

• Slurm uses hexadecimal masks to select which CPU cores tasks should bind to
• Bits ordered right to left

• First bit masks core #0

• Each task need it's mask

• Single mask for 7 cores out of 8 (disabling core #0)
• Core numbers: 76543210

• Binary mask: 11111110

• Hexadecimal value: 0xfe

• Slurm expression
• Allocation (salloc/sbatch)

--nodes=1 --ntasks-per-node=1 --partition=small-g --exclusive

--nodes=1 --ntasks-per-node=1 --partition=standard-g

• Execution (srun)
--cpu-bind=mask_cpu:0xfe bash -c 'taskset -cp $$'

More bitmasks

35

• More tasks to allocate full node symmetrically with 7 tasks per each CCD
• First CCD:

•Binary mask: 11111110 (8 bits, zero at first), hexadecimal value: 0xfe (2 digits)

• Second CCD:
• 1111111000000000 (16 bits, zeros at first 9 bits), hexadecimal value: 0xfe00 (4 digits)

• Third CCD:
• 111111100000000000000000 (24 bits), hexadecimal value: 0xfe0000 (6 digits)

• …

• Complete masks
• sbatch/salloc: --ntasks-per-node=8 --exclusive

• srun: --cpu-bind=mask_cpu:0xfe,0xfe00,\ #cores 1-7, 9-15

0xfe0000,0xfe000000,\ #cores 17-23, 25-31
0xfe00000000,0xfe0000000000,\ #cores 33-39, 41-47
0xfe000000000000,0xfe00000000000000 #cores 49-55, 57-63

Inspecting binding with MPI

36

• Use MPICH_CPUMASK_DISPLAY=1 variable to print actual bitmask for MPI ranks

[PE_0]: cpumask set to 7 cpus on nid007916, cpumask = 0011111110

[PE_1]: cpumask set to 7 cpus on nid007916, cpumask = 001111111000000000

[PE_2]: cpumask set to 7 cpus on nid007916, cpumask = 00111111100000000000000000

[PE_3]: cpumask set to 7 cpus on nid007916, cpumask = 0011111110000000000000000000000000

[PE_4]: cpumask set to 7 cpus on nid007916, cpumask = 001111111000000000000000000000000000000000

[PE_5]: cpumask set to 7 cpus on nid007916, cpumask = 001111111000

[PE_6]: cpumask set to 7 cpus on nid007916, cpumask = 001111111000

[PE_7]: cpumask set to 7 cpus on nid007916, cpumask = 001111111000

Another binding diagnose

37

• hybrid_check tool from the lumi-CPEtools module (LUMI Software Stack)

~> srun --cpus-per-task=7 --hint=nomultithread hybrid_check -r

++ hybrid_check: MPI rank 0/8 OpenMP thread 0/7 on cpu 1/128 of nid007916 mask 1-7

++ hybrid_check: MPI rank 0/8 OpenMP thread 1/7 on cpu 2/128 of nid007916 mask 1-7

++ hybrid_check: MPI rank 0/8 OpenMP thread 2/7 on cpu 3/128 of nid007916 mask 1-7

++ hybrid_check: MPI rank 0/8 OpenMP thread 3/7 on cpu 4/128 of nid007916 mask 1-7

++ hybrid_check: MPI rank 0/8 OpenMP thread 4/7 on cpu 5/128 of nid007916 mask 1-7

++ hybrid_check: MPI rank 0/8 OpenMP thread 5/7 on cpu 6/128 of nid007916 mask 1-7

++ hybrid_check: MPI rank 0/8 OpenMP thread 6/7 on cpu 7/128 of nid007916 mask 1-7

++ hybrid_check: MPI rank 1/8 OpenMP thread 0/7 on cpu 9/128 of nid007916 mask 9-15

++ hybrid_check: MPI rank 1/8 OpenMP thread 1/7 on cpu 10/128 of nid007916 mask 9-15

++ hybrid_check: MPI rank 1/8 OpenMP thread 2/7 on cpu 11/128 of nid007916 mask 9-15

++ hybrid_check: MPI rank 1/8 OpenMP thread 3/7 on cpu 12/128 of nid007916 mask 9-15

++ hybrid_check: MPI rank 1/8 OpenMP thread 4/7 on cpu 13/128 of nid007916 mask 9-15

++ hybrid_check: MPI rank 1/8 OpenMP thread 5/7 on cpu 14/128 of nid007916 mask 9-15

++ hybrid_check: MPI rank 1/8 OpenMP thread 6/7 on cpu 15/128 of nid007916 mask 9-15

Adding GPUs to equation

38

• Note no direct correspondence between the NUMA region order and GPU numbering

• See rocm-smi for topology output

• CPU-centric approach (1 task/GPU)

• Use masks from previous slide

• Use select_gpu wrapper

• Or try --gpu-bind=map_gpu:<map>

• GPU-centric approach

• Reorder task cpu masking

Inspecting GPU and CPU bindings

39

• lumi-CPEtools module provides
• hybrid_check tool program showing masks for CPU binding

• gpu_check combines CPU binding with GPU assigment

• See hands-on examples to experiment with these tools

• Taskset simple linux utility for checking cpu masks

#!/bin/bash -l

#SBATCH --partition=standard-g # Partition (queue) name

#SBATCH --nodes=1 # Total number of nodes

#SBATCH --ntasks-per-node=8 # 8 MPI ranks per node

#SBATCH --gpus-per-node=8 # Allocate one gpu / MPI rank

#SBATCH --time=5 # Run time (d-hh:mm:ss)

#SBATCH --account=<project_account> # Project for billing

CPU_BIND="mask_cpu:0xfe,0xfe00,"

CPU_BIND="${CPU_BIND}0xfe0000,0xfe000000,"

CPU_BIND="${CPU_BIND}0xfe00000000,0xfe0000000000,"

CPU_BIND="${CPU_BIND}0xfe000000000000,0xfe00000000000000"

GPU_BIND="map_gpu:4,5,2,3,6,7,0,1"

export OMP_NUM_THREADS=7

export OMP_PROC_BIND=close

export OMP_PLACES=cores

export MPICH_GPU_SUPPORT_ENABLED=1

srun --cpu-bind=${CPU_BIND} --gpu-bind=${GPU_BIND} \

./hello_jobstep/hello_jobstep

40

Complete script
(CPU centric binding)

This will expose
single GPU to one

task

Complete script
(GPU centric binding)

41

#!/bin/bash -l

#SBATCH --partition=standard-g # Partition (queue) name

#SBATCH --nodes=1 # Total number of nodes

#SBATCH --ntasks-per-node=8 # 8 MPI ranks per node

#SBATCH --gpus-per-node=8 # Allocate one gpu / MPI rank

#SBATCH --time=5 # Run time (d-hh:mm:ss)

#SBATCH --account=<project_account> # Project for billing

CPU_BIND="mask_cpu:0xfe000000000000,0xfe00000000000000,"

CPU_BIND="${CPU_BIND}0xfe0000,0xfe000000,"

CPU_BIND="${CPU_BIND}0xfe,0xfe00,"

CPU_BIND="${CPU_BIND}0xfe00000000,0xfe0000000000"

export OMP_NUM_THREADS=7

export OMP_PROC_BIND=close

export OMP_PLACES=cores

export MPICH_GPU_SUPPORT_ENABLED=1

srun --cpu-bind=${CPU_BIND} ./hello_jobstep/hello_jobstep

This will expose all
GPUs to every task

Complete script
(using wrapper)

42

#!/bin/bash -l

#SBATCH --partition=standard-g # Partition (queue) name

#SBATCH --nodes=1 # Total number of nodes

#SBATCH --ntasks-per-node=8 # 8 MPI ranks per node

#SBATCH --gpus-per-node=8 # Allocate one gpu / MPI rank

#SBATCH --time=5 # Run time (d-hh:mm:ss)

#SBATCH --account=<project_account> # Project for billing

cat << EOF > select_gpu

#!/bin/bash

export ROCR_VISIBLE_DEVICES=\$SLURM_LOCALID

exec \$*

EOF

chmod +x ./select_gpu

CPU_BIND="mask_cpu:0xfe000000000000,0xfe00000000000000,"

CPU_BIND="${CPU_BIND}0xfe0000,0xfe000000,"

CPU_BIND="${CPU_BIND}0xfe,0xfe00,"

CPU_BIND="${CPU_BIND}0xfe00000000,0xfe0000000000"

export OMP_NUM_THREADS=7

export OMP_PROC_BIND=close

export OMP_PLACES=cores

export MPICH_GPU_SUPPORT_ENABLED=1

srun --cpu-bind=${CPU_BIND} ./select_gpu \

./hello_jobstep/hello_jobstep

This will expose
again single GPUs

to each task

Container jobs

43

• LUMI provides the singularity runtime included in the HPE Cray OS
• No modules need to be loaded

• No custom versions are supported

• No container build service is provided on LUMI currently
• Bring your own container policy

• Docker container can be run without manual conversion

• Use native .sif file or Docker repository/registry

• You can run containers with srun directly
srun --partition=<partition> --account=<account_id> singularity exec ubuntu_21.04.sif \

cat /etc/os-release

Running container from the registry

44

• Pulling container from the DockerHub
singularity pull docker://rocm/tensorflow-build:latest-focal-python3.8-rocm5.5.0

• Running the container in the interactive mode
srun --pty \

--ntasks=1 --gpus=8 --partition=dev-g \
--account=<account_id> --time=10 \
singularity exec tensorflow-build_latest-focal-python3.8-rocm5.5.0.sif \
rocm-smi --showtopo

GPU[0] : (Topology) Numa Node: 3

GPU[1] : (Topology) Numa Node: 3

GPU[2] : (Topology) Numa Node: 1

GPU[3] : (Topology) Numa Node: 1

GPU[4] : (Topology) Numa Node: 0

GPU[5] : (Topology) Numa Node: 0

GPU[6] : (Topology) Numa Node: 2

GPU[7] : (Topology) Numa Node: 2

Binding file systems in the container

45

• LUMI filesystem (/scratch or /project) are not accessible from within
the container

• They need to be explicitly bound by passing the -B/--bind command
line option to the singularity command

• Simply binding /scratch or /project will not work
• These paths are symlinks on LUMI, you must bind full paths to make them

available in the container

Running containers in parallel

46

• For MPI containers, the image must use MPICH ABI-compatibleMPI version

• Using the host MPI
• Install singularity bindings from the LUMI Software Stack

module load LUMI partition/<lumi-partition> EasyBuild-user
eb singularity-bindings-system-cpeGNU-<toolchain-version>.eb -r

• Run the container with the specific environment
module load singularity-bindings
srun --partition=<partition> --account=<account> --nodes=2 singularity run <mpi_container>.sif

• Using the container MPI
• Run with Slurm generic PMI mode

srun --partition=<partition> --account=<account> --nodes=2 \
--mpi=pmi2 \
singularity run <mpi_container>.sif

• No support for OpenMPI at this stage, although second approach may work for specific builds

Known issues

47

• --gpu-bind=closest still does not work as expected. On standard-g, it will
not give you the proper GPUs (apart from other problems with Slurm doing the
binding). On small-g, it will not enforce an allocation with the proper CPU cores
for the GPUs in your allocation.

• The Slurm GPU binding is still incompatible with shared memory communication
between GPUs in different tasks, as is used by, e.g., GPU-aware Cray MPICH intra-
node communication. So the trick of avoiding Slurm doing the binding and do a
manual binding instead via the select_gpu script used in the LUMI documentation,
is still needed.

• MPICH_CPUMASK_DISPLAY=1 is not showing actual thread binding with all OMP
runtimes

