
Running Jobs
on LUMI

1

Maciej Szpindler
LUMI User Support Team

Cyfronet

Running Jobs

• Slurm intro
• Slurm partitions
• Interactive jobs
• Batch jobs
• Job arrays
• Running containers
• GPU/CPU/thread binding, NUMA
• Hands on

Slurm intro

3

• Slurm is an open source cluster management and job scheduling system
which provides:
• exclusive and/or non-exclusive allocation of resources (compute nodes)
• infrastructure for starting, executing, and monitoring jobs
• fair share queue of pending jobs

Slurm version

4

Note Slurm version on LUMI is 22.05.8 (as of May 2023). Default
documentation on the web is for versions 23.02. Please use specific version:

https://slurm.schedmd.com/archive/slurm-22.05.8/

https://slurm.schedmd.com/archive/slurm-22.05.8/

Slurm partition

5

• Slurm partitions are (possibly overlapping) groups of nodes with similar
resources or associated limits
• Logical concept to manage access to LUMI HW partitions (GPU, CPU

nodes)
• Different context of partition: hardware, access, target architecture
• List of available partitions

sinfo –s

• Partition details
scontrol show partition <partition-name>

Available partitions

6

Partition name Max walltime Max jobs Max resources/job HW partition

Slurm partitions allocatable by node (exclusively)

standard-g 2 days 210 (200 running) 1024 nodes LUMI-G

standard 2 days 120 (100 running) 512 nodes LUMI-C

bench 1 day n/a All node LUMI-C

Slurm partitions allocatable by resources (shared)

dev-g 6 hours 2 (1 running) 16 nodes LUMI-G

small-g 3 days 210 (200 running) 4 nodes LUMI-G

small 3 days 220 (200 running) 4 nodes LUMI-C

debug 30 minutes 2 (1 running) 4 nodes LUMI-C

largemem 1 day 30 (20 running) 1 nodes LUMI-D

Fairness

7

• The Slurm partition setup of LUMI prioritizes jobs that aim to scale out
• most nodes are reserved for jobs that use them exclusively (standard partitions)

• Your job (or allocation request) is queued until resource time-window is
available
• Examine the queue of jobs

squeue
• --me option is an alias for list of your jobs
• --start shows when your pending job will start

• Factors that decides on your job's queue priority
sprio
• Fairshare is a factor responsible for a "fair" access to all users/accounts

Project account

8

• Running jobs requires a project account
• It is created when you are granted project allocation
• You need to specify your project account ID in your job script (or with the command

option)
• This is mandatory
• Account ID has a nameproject_xxxxxxxxx (9 digits)

• You can use the lumi-allocations command to list the projects of
which you are a member.
• Alternative is to use the groups command to see account IDs
• Your allocation portal should also show your project's account IDs

Interactive jobs

9

• Using salloc
• creates pool of resources reserved for your interactive execution (tasks)
• the command will start a new shell on the login node
• you can start parallel execution on the allocated nodes withsrun
• to obtain a shell on the first allocated compute node you can use srun --pty
• the allocation can be terminated by exiting the shell withexit

salloc --nodes=2 --account=<project_id> --partition=<partition_name> --time=15
salloc: Granted job allocation 123456
salloc: Waiting for resource configuration

srun --ntasks=32 --cpus-per-task=8 ./mpi_openmp_application
exit

Interactive jobs

10

• Using srun directly
• You can execute single parallel task with srun command
• To start a shell on the first allocated node in a specific job/allocation use

srun --interactive --pty --jobid=<jobid> $SHELL
• The-w nid00XXXX option selects a specific compute node

srun --interactive --pty --jobid=<jobid> -w nid002217 …

• Use --overlap option to share resources already used by your other
job step (task)

srun --interactive --pty --jobid=<jobid> top

Job launcher

11

• srun is the only parallel launcher on LUMI
• there is no mpirun nor mpiexec commands
• returns the highest exit code of all tasks or the highest signal

Batch jobs

12

• Batch jobs are submitted with sbatch job.sh command
• File job.sh is your job script
• Job script is regular shell script with #SBATCH directives and execute command
• You can use Slurm options with directives , from the command line or via environmental

variables

• sbatch exits immediately after the script is successfully transferred to the
Slurm controller and assigned a Slurm job ID
• Slurm runs a single copy of the batch script on the first node in the set of

allocated nodes
• Both standard output and error are directed to a file slurm-
<job_id>.out by default

Batch job script

13

• Remember to include the sheebang in the first line of your job script
• #!/bin/bash is recommended
• Skipping the sheebang line or using fancy interpreters may result in module failures

• Directive line is #SBATCH followed by sbatch option and value
• #SBATCH" directive lines before any executable commands
• #SBATCH directives are interpreted once the first non-comment non-whitespace

line is reached
• Command line options overrides any environment variables and environment

variables overrides any options set in a batch job script
• You can enable e-mail notifications in the job script
• You can define dependencies between batch jobs

• --time Set a limit on the total run
time of the job allocation

• --account Charge resources used
by this job to specified project
• --partition Request a specific

partition for the resource allocation
• --job-name Specify a name for the

job allocation
• --mail-user Used to specify the

email that should receive notification
• --mail-type When to send an

email: BEGIN, END, FAIL, ALL

• --nodes Number of nodes to be allocated

• --ntasks Maximum number of tasks (MPI ranks)

• --ntasks-per-node Number of tasks per node

• --cpus-per-task Number of cores per tasks

• --cpus-per-gpu Number of CPUs per allocated
GPU

• --gpus Total number of GPUs to be allocated for
the job

• --gpus-per-node Number of GPUs per node

• --gpus-per-task Number of GPUs per task

• --mem Set the memory per node

• --mem-per-cpu Memory per allocated CPU cores

• --mem-per-gpu Memory per allocated GPU
14

Sbatch options

Other Slurm options

15

• --exclusive the job is allocated all CPUs and GRES on all nodes in the allocation, but is
only allocated as much memory as it requested

• --mem=0 requests all the memory on a node

• --export propagates environment variables from the submission environment to the
launched application, ALL by default

• --time accepts time formats include "minutes", "minutes:seconds",
"hours:minutes:seconds", "days-hours", "days-hours:minutes" and "days-
hours:minutes:seconds"

• --reservation=<reservation_names> allocates resources for the job from the
named reservation

• --dependency=<type:job_id[:job_id]> defines the condition that the job with
ID job_id must fulfil before the job which depends on it can start; type includes after,
afterany, afterok, afternotok

Automatic requeuing

16

• LUMI is using Slurm automatic requeuing of jobs upon node failure
• your job is automatically resubmitted if any of it's nodes allocated fails
• identical job ID is used and the previous output truncated

• Disable automatic requeuing with --no-requeue option

• Avoid your output file being truncated with --open-mode=append option
• Use the value of the SLURM_RESTART_COUNT variable
• The value of this variable is 0 for first time the job is run
• If the job has been restarted then the value is incremented

Generic Job script

17

#!/bin/bash -l

#SBATCH --job-name=examplejob # Job name

#SBATCH --output=examplejob.o%j # Name of stdout output file

#SBATCH --error=examplejob.e%j # Name of stderr error file

#SBATCH --partition=standard # Partition (queue) name

#SBATCH --nodes=10 # Total number of nodes

#SBATCH --ntasks=640 # Total number of mpi tasks

#SBATCH --mem=0 # Allocate all the memory on the node

#SBATCH --time=1-12:00:00 # Run time (d-hh:mm:ss)

#SBATCH --mail-type=all # Send email at begin and end of job

#SBATCH --account=project_<id> # Project for billing

#SBATCH --mail-user=username@domain.com

Any other commands must follow the #SBATCH directives

Launch MPI code srun

./your_application # Use srun instead of mpirun or mpiexec

Job scripts and modules

18

• You need to load modules to set specific environment for your job
• Otherwise it is propagated from your current shell
• Remember the sheebang line

• With the LUMI software stack
• Use partition modules partition/C/G/L to choose target architecture for the

application or the library
• Do not confuse with Slurm--partition selection

•Hardcoding modules in the bashrc profile may cause troubles

Job arrays

19

• Slurm job array submits a given number of independent jobs
• Use --array option to define the number of array tasks
• The SLURM_ARRAY_TASK_ID environment variable identifies each array task uniquely
• Job arrays use IDs of the form <jobid>_<arrayindex>

• pending array task are shown as one entry with it's IDs combined
• running ones are shown as individual jobs

• Job array is subject to limits same as single job (see partition's limits)

#!/bin/bash

#SBATCH --array=1-16

#SBATCH --output=array_%A_%a.out

#SBATCH --error=array_%A_%a.err

#SBATCH --time=01:00:00

#SBATCH --ntasks=1

#SBATCH --mem=4G

Print the task index. echo "My SLURM_ARRAY_TASK_ID: " $SLURM_ARRAY_TASK_ID

srun ./myapp --input input_data_${SLURM_ARRAY_TASK_ID}.inp

Container jobs

20

• LUMI provides the singularity runtime included in the HPE Cray OS
• No modules need to be loaded
• No custom versions are supported

• No container build service is provided on LUMI currently
• Bring your own container policy
• Docker container can be run without manual conversion
• Use native .sif file or Docker repository/registry

• You can run containers with srun directly
srun --partition=<partition> --account=<account_id> singularity exec ubuntu_21.04.sif \
cat /etc/os-release

Running container from the registry

21

• Pulling container from the DockerHub
singularity pull docker://rocm/tensorflow-build:latest-focal-python3.8-rocm5.5.0

• Running the container in the interactive mode
srun --pty \
--ntasks=1 --gpus=8 --partition=dev-g \
--account=<account_id> --time=10 \
singularity exec tensorflow-build_latest-focal-python3.8-rocm5.5.0.sif \
rocm-smi --showtopo

GPU[0] : (Topology) Numa Node: 3
GPU[1] : (Topology) Numa Node: 3
GPU[2] : (Topology) Numa Node: 1
GPU[3] : (Topology) Numa Node: 1
GPU[4] : (Topology) Numa Node: 0
GPU[5] : (Topology) Numa Node: 0
GPU[6] : (Topology) Numa Node: 2
GPU[7] : (Topology) Numa Node: 2

Binding file systems in the container

22

• LUMI filesystem (/scratch or /project) are not accessible from within
the container
• They need to be explicitly bound by passing the -B/--bind command

line option to the singularity command
• Simply binding /scratch or /project will not work
• These paths are symlinks on LUMI, you must bind full paths to make them

available in the container

Running containers in parallel

23

• For MPI containers, the image must use MPICH ABI-compatible MPI version
• Using the host MPI

• Install singularity bindings from the LUMI Software Stack
module load LUMI partition/<lumi-partition> EasyBuild-user
eb singularity-bindings-system-cpeGNU-<toolchain-version>.eb -r

• Run the container with the specific environment
module load singularity-bindings
srun --partition=<partition> --account=<account> --nodes=2 singularity run <mpi_container>.sif

• Using the container MPI
• Run with Slurm generic PMI mode

srun --partition=<partition> --account=<account> --nodes=2 \
--mpi=pmi2 \
singularity run <mpi_container>.sif

• No support for OpenMPI at this stage, although second approach may work for specific builds

Concept of socket, core and threads

24

• LUMI compute nodes use Non-Uniform Memory
Access design
• 2 threads per core, 64 cores, 4 NUMA domains per socket
• 1 socket for LUMI-G nodes
• 2 sockets for LUMI-C nodes

• Memory in the local NUMA node can be accessed
faster
• Binding of a process or thread to a specific core can

improve the performance by increasing memory
locality
• Binding only makes sense for exclusive node

access, this is the default for
the standard and standard-g partitions

Tasks distribution

25

• Slurm can use different policies to distribute tasks (MPI ranks)
• --distribution=<dist> srun option sets the policy
• <dist> can be subdivided in multiple levels for nodes, sockets and cores
• Requires exclusive access

• Node level
• block (default) distributes tasks to a node such that consecutive tasks share a node
• cyclic consecutive tasks are distributed over consecutive nodes (in a round-robin fashion)

• Socket level
• block consecutive tasks are distributed on the same socket
• cyclic (default) tasks are distributed in a round-robin fashion across sockets

• Core level
• inherits from second distribution method

• Combine distribution levels with semicolon, for instance --distribution=block:block

Multi-threading

26

• Hyperthreads
• Control hardware multithreading with --hint=nomultithread (default) Slurm option
• Hardware threads are visible as cores 64-127 (LUMI-G) 128-255 (LUMI-C)

• Software multi-threading
• OpenMP provides control over a thread affinity
• Display binding with OMP_DISPLAY_AFFINITY=TRUE environmental variable
• Use OMP_PLACES to define where the threads should be pinned on with values threads,

cores, sockets
• Use OMP_PROC_BIND to define how threads are mapped to the places

• spread distributes (spread) the threads as evenly as possible
• close binds threads close to the master thread
• master binds threads to the same place as the master thread
• false allows threads to be moved between places and disables thread affinity

Binding tasks to resources

27

• Slurm can bind tasks to specific resources

• Requires exclusive access

• CPU binding (srun only) --cpu-bind=<bind>
• threads tasks are pinned to the logical threads
• cores tasks are pinned to the cores
• sockets tasks are pinned to the sockets
• map_cpu:<list> custom bindings of tasks with <list> a comma-separated list of CPUIDs
• mask_cpu:<list> custom bindings of tasks with <list> a comma-separated hexadecimal values of mask for cores

• GPU binding with --gpu-bind=<bind>
• map_gpu:<list> custom bindings of tasks with <list> a comma-separated list of GPUIDs
• mask_gpu:<list> custom bindings of tasks with <list> a comma-separated hexadecimal values of mask for GPUs

• Memory binding is also possible

Combining tasks and threads

28

• For a hybrid MPI+OpenMP jobs use --cpus-per-task srun option
• Allocates multiple cores per process (MPI rank)
• Allows spawned threads bind to allocated cores
• It still requires OMP_NUM_THREADS for explicit control
• NOTE: Beginning with 22.05, srun will not inherit the --cpus-per-task value

requested by salloc or sbatch. It must be requested again with the call to srun or set
with the SRUN_CPUS_PER_TASK environment variable if desired for the task(s).

• Inspect actual task/thread affinity with
• MPICH_CPUMASK_DISPLAY=1

Multi GPU runs

29

• GPU mapping (automatic assignment)
• Slurm GPU binding
• Slurm CPU mapping

• GPU masking (explicit mapping)
• Using ROCm environment variable ROCR_VISIBLE_DEVICES
• Custom select_gpuwrapper script

• GPU-aware MPI
• Turn on with MPICH_GPU_SUPPORT_ENABLED=1 MPI variable
• Allows to use device pointers (buffers)
• Map tasks to network interfaces with MPICH_OFI_NIC_POLICY=GPU

Low-noise mode

30

• LUMI-G nodes have the low-noise mode activated
• One core (#0) is restricted for the operating system
• Only 63 cores are available to the jobs
• Jobs requesting 64 cores/node will never run

• Default core bindings may be sub-optimal
• Thread team belonging to one task (MPI rank) may spread on multiple NUMA

domains
• Symmetric distribution requires 7 cores per GPU
• Use custom binding with CPU masks
• Works only with exclusive allocation (mind small-g and dev-g partitions)

Understanding bitmasks

31

• Slurm uses hexadecimal masks to select which CPU cores tasks should bind to
• Bits ordered right to left
• First bit masks core #0
• Each task need it's mask

• Single mask for 7 cores out of 8 (disabling core #0)
• Core numbers: 76543210
• Binary mask: 11111110
• Hexadecimal value: 0xfe

• Slurm expression
• Allocation (salloc/sbatch)

--nodes=1 --ntasks-per-node=1 --partition=small-g --exclusive
--nodes=1 --ntasks-per-node=1 --partition=standard-g

• Execution (srun)
--cpu-bind=mask_cpu:0xfe bash -c 'taskset -cp $$'

More bitmasks

32

• More tasks to allocate full node symmetrically with 7 tasks per each CCD
• First CCD:

•Binary mask: 11111110 (8 bits, zero at first), hexadecimal value: 0xfe (2 digits)
• Second CCD:

• 1111111000000000 (16 bits, zeros at first 9 bits), hexadecimal value: 0xfe00 (4 digits)
• Third CCD:

• 111111100000000000000000 (24 bits), hexadecimal value: 0xfe0000 (6 digits)
• …

• Complete masks
• sbatch/salloc: --ntasks-per-node=8 --exclusive
• srun: --cpu-bind=mask_cpu:0xfe,0xfe00,\ #cores 1-7, 9-15

0xfe0000,0xfe000000,\ #cores 17-23, 25-31
0xfe00000000,0xfe0000000000,\ #cores 33-39, 41-47
0xfe000000000000,0xfe00000000000000 #cores 49-55, 57-63

Inspecting binding with MPI

33

• Use specific MPICH_CPUMASK_DISPLAY=1 variable to print actual bitmask for MPI ranks

[PE_0]: cpumask set to 7 cpus on nid005301, cpumask = 000000001111111000
[PE_1]: cpumask set to 7 cpus on nid005301, cpumask = 1111111000

[PE_2]: cpumask set to 7 cpus on nid005301, cpumask = 00111111100000000000000000

[PE_3]: cpumask set to 7 cpus on nid005301, cpumask = 0000000000000000000000000000000011111110000000000000000000000000
[PE_4]: cpumask set to 7 cpus on nid005301, cpumask = 0011111110

[PE_5]: cpumask set to 7 cpus on nid005301, cpumask = 001111111000000000
[PE_6]: cpumask set to 7 cpus on nid005301, cpumask = 0000000000000000000000001111111000000000000000000000000000000000

[PE_7]: cpumask set to 7 cpus on nid005301, cpumask = 00000000000000001111111000

Adding GPUs to equation

34

• Note no direct correspondence between the the NUMA region order and GPU numbering
• Recall rocm-smi topology output

• CPU-centric approach (1 task/GPU)
• Use masks from previous slide
• Use select_gpu wrapper
• Or try --gpu-bind=map_gpu:<map>

• GPU-centric approach
• Reorder task cpu masking

#!/bin/bash -l

#SBATCH --partition=standard-g # Partition (queue) name

#SBATCH --nodes=1 # Total number of nodes

#SBATCH --ntasks-per-node=8 # 8 MPI ranks per node

#SBATCH --gpus-per-node=8 # Allocate one gpu / MPI rank

#SBATCH --time=5 # Run time (d-hh:mm:ss)

#SBATCH --account=<project_account> # Project for billing

CPU_BIND="mask_cpu:0xfe,0xfe00,"

CPU_BIND="${CPU_BIND}0xfe0000,0xfe000000,"

CPU_BIND="${CPU_BIND}0xfe00000000,0xfe0000000000,"

CPU_BIND="${CPU_BIND}0xfe000000000000,0xfe00000000000000"

GPU_BIND="map_gpu:4,5,2,3,6,7,0,1"

export OMP_NUM_THREADS=7

export OMP_PROC_BIND=close

export OMP_PLACES=cores

export MPICH_GPU_SUPPORT_ENABLED=1

srun --cpu-bind=${CPU_BIND} --gpu-bind=${GPU_BIND} \

./hello_jobstep/hello_jobstep

35

Complete script
(CPU centric binding)

This will expose
single GPU to one

task

Complete script
(GPU centric binding)

36

#!/bin/bash -l

#SBATCH --partition=standard-g # Partition (queue) name

#SBATCH --nodes=1 # Total number of nodes

#SBATCH --ntasks-per-node=8 # 8 MPI ranks per node

#SBATCH --gpus-per-node=8 # Allocate one gpu / MPI rank

#SBATCH --time=5 # Run time (d-hh:mm:ss)

#SBATCH --account=<project_account> # Project for billing

CPU_BIND="mask_cpu:0xfe000000000000,0xfe00000000000000,"

CPU_BIND="${CPU_BIND}0xfe0000,0xfe000000,"

CPU_BIND="${CPU_BIND}0xfe,0xfe00,"

CPU_BIND="${CPU_BIND}0xfe00000000,0xfe0000000000"

export OMP_NUM_THREADS=7

export OMP_PROC_BIND=close

export OMP_PLACES=cores

export MPICH_GPU_SUPPORT_ENABLED=1

srun --cpu-bind=${CPU_BIND} ./hello_jobstep/hello_jobstep

This will expose all
GPUs to every task

Complete script
(using wrapper)

37

#!/bin/bash -l

#SBATCH --partition=standard-g # Partition (queue) name

#SBATCH --nodes=1 # Total number of nodes

#SBATCH --ntasks-per-node=8 # 8 MPI ranks per node

#SBATCH --gpus-per-node=8 # Allocate one gpu / MPI rank

#SBATCH --time=5 # Run time (d-hh:mm:ss)

#SBATCH --account=<project_account> # Project for billing

cat << EOF > select_gpu

#!/bin/bash

export ROCR_VISIBLE_DEVICES=\$SLURM_LOCALID

exec \$*

EOF

chmod +x ./select_gpu

CPU_BIND="mask_cpu:0xfe000000000000,0xfe00000000000000,"

CPU_BIND="${CPU_BIND}0xfe0000,0xfe000000,"

CPU_BIND="${CPU_BIND}0xfe,0xfe00,"

CPU_BIND="${CPU_BIND}0xfe00000000,0xfe0000000000"

export OMP_NUM_THREADS=7

export OMP_PROC_BIND=close

export OMP_PLACES=cores

export MPICH_GPU_SUPPORT_ENABLED=1

srun --cpu-bind=${CPU_BIND} ./select_gpu \

./hello_jobstep/hello_jobstep

This will expose
again single GPUs

to each task

More advanced wrapper

38

• You can also start with CPU centric binding and refine wrapper to reorder
GPUs visibility
#!/bin/bash

GPUSID="4 5 2 3 6 7 0 1"

GPUSID=(${GPUSID})

if [${#GPUSID[@]} -gt 0 -a -n "${SLURM_NTASKS_PER_NODE}]; then

if [${#GPUSID[@]} -gt $SLURM_NTASKS_PER_NODE]; then

export ROCR_VISIBLE_DEVICES=${GPUSID[$(($SLURM_LOCALID))]}

else

export ROCR_VISIBLE_DEVICES=${GPUSID[$((SLURM_LOCALID /
($SLURM_NTASKS_PER_NODE / ${#GPUSID[@]})))]}

fi

fi

exec $*

Know issues

39

• Identifying optimal task binding for a multi GPU performance is complex
• Support for heterogeneous jobs in Slurm is currently broken
• You cannot execute mixed CPU/GPU jobs
sbatch --partition=standard-g : --partition=standard job.sh
• Regular MPMD jobs should still work with --multi-prog option

Large-scale runs

40

• Opportunity to perform runs on the entirety of LUMI
• Provide at most a 1 page description of what you are intending to do
• Deadline for the application is Wednesday 11 days before the last Sunday

every month
• Access on the last Sunday every month (subject to change over time)
• Resource usage for any runs during this window will be billed as usual
• The applications are submitted via the Helpdesk, using contact form with

the "large-scale runs" category

